Electronic spectra of mass-selected HCH-Ar ( = 1-3) and HCH-(N) ( = 1-2) complexes are measured over the 290-530 nm range using resonance-enhanced photodissociation spectroscopy in a tandem mass spectrometer. Vibronic transitions in the visible region are compared with previous experimental and theoretical results for the ÃΠ ← X̃Π band system of HCH. Hole burning experiments confirm that transitions over the 290-340 nm range involve the diacetylene cation (HCH). On the basis of previous experiments and comparison with spectra of isoelectronic molecules the peaks are assigned to the 2Π ← X̃Π band system, with the origin transition for HCH-Ar occurring at 29723 cm. The main progression has a spacing of 906 cm and is assigned to the symmetric C-C stretch vibrational mode (ν). The assignment of additional bands is complicated by spectral congestion, the possible presence of energetically close-lying electronic states, vibronic coupling effects, and by the fact that HCH possibly becomes nonlinear in the 2Π state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.9b05996 | DOI Listing |
Sci Adv
January 2025
QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.
Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.
Context: Donor-acceptor (D-A) complexes, formed between two or more molecules held together by intermolecular forces, show interesting tunable properties and found applications in diverse fields, including semiconductors, catalysis, and sensors. In this study, we investigated the D-A complexes formed between perylene and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and their chalcogen (S, Se) and fluorine derivatives. It was observed that interaction energies due to complex formation increase while the HOMO-LUMO gaps decrease with chalcogen substitutions.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.
Two-dimensional (2D) electronic spectra of the phenylene ethynylene dendrimer with 2-ring and 3-ring branches were evaluated by combining the on-the-fly trajectory surface hopping nonadiabatic dynamics and the doorway-window simulation protocol. The ground state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA) contributions to the 2D signal were obtained and carefully analyzed. The results demonstrate that the ultrafast intramolecular nonadiabatic excited-state energy transfer (EET) from the 2-ring to the 3-ring units is comprehensively characterized by the SE and ESA signals.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Ideal Vacuum Products, LLC, 5910 Midway Park Blvd. NE, Albuquerque, New Mexico 87109, USA.
The hydroxysilylene (HSiOH) molecule has been spectroscopically identified in the gas phase for the first time. This highly reactive species was produced in a twin electric discharge jet using separate precursor streams of 16O2/18O2 and Si2H6/Si2D6, both diluted in high pressure argon. The strongest and most stable laser induced fluorescence (LIF) signals were obtained by applying an electric discharge to each of the precursor streams and then merging the discharge products just prior to expansion into vacuum.
View Article and Find Full Text PDFACS Earth Space Chem
January 2025
School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, U.K.
2-Cyanoindene is one of the few specific aromatic or polycyclic aromatic hydrocarbon (PAH) molecules positively identified in Taurus molecular cloud-1 (TMC-1), a cold, dense molecular cloud that is considered the nearest star-forming region to Earth. We report cryogenic mid-infrared (550-3200 cm) and visible (16,500-20,000 cm, over the ← electronic transition) spectra of 2-cyanoindene radical cations (2CNI), measured using messenger tagging (He and Ne) photodissociation spectroscopy. The infrared spectra reveal the prominence of anharmonic couplings, particularly over the fingerprint region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!