Recent years have seen a tremendous interest in the bottom-up reconstitution of minimal biomolecular systems, with the ultimate aim of creating an autonomous synthetic cell. One of the universal features of living systems is cell growth, where the cell membrane expands through the incorporation of newly synthesized lipid molecules. Here, the gradual tension-mediated growth of cell-sized (≈10 µm) giant unilamellar vesicles (GUVs) is demonstrated, to which nanometer-sized (≈30 nm) small unilamellar vesicles (SUVs) are provided, that act as a lipid source. By putting tension on the GUV membranes through a transmembrane osmotic pressure, SUV-GUV fusion events are promoted and substantial growth of the GUV is caused, even up to doubling its volume. Thus, experimental evidence is provided that membrane tension alone is sufficient to bring about membrane fusion and growth is demonstrated for both pure phospholipid liposomes and for hybrid vesicles with a mixture of phospholipids and fatty acids. The results show that growth of liposomes can be realized in a protein-free minimal system, which may find useful applications in achieving autonomous synthetic cells that are capable of undergoing a continuous growth-division cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201902898 | DOI Listing |
Anal Bioanal Chem
November 2024
Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
Studying specific subpopulations of cancer-derived extracellular vesicles (EVs) could help reveal their role in cancer progression. In cancer, an increase in reactive oxygen species (ROS) happens which results in lipid peroxidation with a major product of 4-hydroxynonenal (HNE). Adduction by HNE causes alteration to the structure of proteins, leading to loss of function.
View Article and Find Full Text PDFCell Rep
June 2022
Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China. Electronic address:
Tumor-suppressive cell competition is an evolutionarily conserved process that selectively removes precancerous cells to maintain tissue homeostasis. Using the polarity-deficiency-induced cell competition model in Drosophila, we identify Toll-6, a Toll-like receptor family member, as a driver of tension-mediated cell competition through α-Spectrin (α-Spec)-Yorkie (Yki) cascade. Toll-6 aggregates along the boundary between wild-type and polarity-deficient clones, where Toll-6 physically interacts with the cytoskeleton network protein α-Spec to increase mechanical tension, resulting in actomyosin-dependent Hippo pathway activation and the elimination of scrib mutant cells.
View Article and Find Full Text PDFNature
May 2022
Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
As an animal's surface area expands during development, skin cell populations must quickly respond to maintain sufficient epithelial coverage. Despite much progress in understanding of skin cell behaviours in vivo, it remains unclear how cells collectively act to satisfy coverage demands at an organismic level. Here we created a multicolour cell membrane tagging system, palmskin, to monitor the entire population of superficial epithelial cells (SECs) in developing zebrafish larvae.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2022
Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria;
Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow [J.-L.
View Article and Find Full Text PDFJ Nanobiotechnology
May 2021
Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!