Guidance of active particles at liquid-liquid interfaces near surfaces.

Soft Matter

Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain. and Institució Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.

Published: August 2019

Artificial microswimmers have the potential for applications in many fields, ranging from targeted cargo delivery and mobile sensing to environmental remediation. In many of these applications, the artificial swimmers will operate in complex media necessarily involving liquid-liquid interfaces. Here, we experimentally study the motion of chemically powered phoretic active colloids close to liquid-liquid interfaces while swimming next to a solid substrate. In a system involving this complex geometry, we find that the active particles have an alignment interaction with both the neighbouring solid and liquid interfaces, allowing for a robust guiding mechanism along the liquid interface. We compare with minimal active Brownian simulations to show that these phoretically active particles stay along the interfaces for much longer times and lengths than expected for standard active Brownian particles. We also track the propulsion speeds of these particles and find a reduced speed close to the liquid-liquid interface. We report an interesting non-linear dependence of this reduction on the particle's bulk speed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01016eDOI Listing

Publication Analysis

Top Keywords

active particles
12
liquid-liquid interfaces
12
close liquid-liquid
8
active brownian
8
particles
5
interfaces
5
active
5
guidance active
4
liquid-liquid
4
particles liquid-liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!