A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multinomial logistic regression for prediction of vulnerable road users risk injuries based on spatial and temporal assessment. | LitMetric

Multinomial logistic regression for prediction of vulnerable road users risk injuries based on spatial and temporal assessment.

Int J Inj Contr Saf Promot

Department of Mechanical Engineering, Centre for Mechanical Technology and Automation, University of Aveiro, Aveiro, Portugal.

Published: December 2019

Urban area's rapid growth often leads to adverse effects such as traffic congestion and increasing accident risks due to the expansion in transportation systems. In the frame of smart cities, active modes are expected to be promoted to improve living conditions. To achieve this goal, it is necessary to reduce the number of vulnerable road users (VRUs) injuries. Considering injury severity levels from crashes involving VRUs, this article seeks spatial and temporal patterns between cities and presents a model to predict the likelihood of VRUs to be involved in a crash. Kernel Density Estimation was applied to identify blackspots based on injury severity levels. A Multinomial Logistic Regression model was developed to identify statistically significant variables to predict the occurrence of these crashes. Results show that target spatial and temporal variables influence the number and severity of crashes involving VRUs. This approach can help to enhance road safety policies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17457300.2019.1645185DOI Listing

Publication Analysis

Top Keywords

spatial temporal
12
multinomial logistic
8
logistic regression
8
vulnerable road
8
road users
8
injury severity
8
severity levels
8
crashes involving
8
involving vrus
8
regression prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!