Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Besides being a metabolic disease, diabetes is considered a vascular disease as many of the complications relate to vascular pathologies. The aim of this study was to investigate how vascular tone and reactivity and vascular cell metabolism were affected in type 2 diabetes mellitus and whether β-hydroxybutyrate could have a positive effect as alternative energy substrate. Isolated mesenteric arteries of db/db and control mice were incubated in media containing [U-C]glucose or [U-C]β-hydroxybutyrate, and tissue extracts were analysed by mass spectrometry. Functional characterization was performed by wire myography to assess vasodilation and vasocontraction. Hypermetabolism of glucose and β-hydroxybutyrate was observed for mesenteric arteries of db/db mice; however, hypermetabolism was significant only with β-hydroxybutyrate as energy substrate. The functional characterization showed impaired endothelial-dependent vasodilation in mesenteric arteries of the db/db mice, whereas the contractility was unaffected. This study provides evidence that the endothelial cells are impaired, whereas the vascular smooth muscle cells are more robust and seemed less affected in the db/db mouse. Furthermore, the results indicate that hypermetabolism of energy substrates may be due to adaptive changes in the mesenteric arteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1479164119865885 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!