Reductive Coupling between C-N and C-O Electrophiles.

J Am Chem Soc

State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University, 222 South Tianshui Road , Lanzhou 730000 , China.

Published: August 2019

The cross-electrophile reaction is a promising strategy for C-C bond formation. Recent studies have focused mainly on reactions with organic halides. Here we report a coupling reaction between C-N and C-O electrophiles that demonstrates the possibility of constructing a C-C bond via C-N and C-O cleavage. Several reactions between benzyl/aryl ammonium salts and vinyl/aryl C-O electrophiles have been studied. Preliminary mechanistic studies revealed that the benzyl ammoniums were activated through a radical mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b05224DOI Listing

Publication Analysis

Top Keywords

c-n c-o
12
c-o electrophiles
12
c-c bond
8
reductive coupling
4
coupling c-n
4
c-o
4
electrophiles cross-electrophile
4
cross-electrophile reaction
4
reaction promising
4
promising strategy
4

Similar Publications

In Situ Growth of Covalent Organic Frameworks on Carbon Nanotubes for High-Performance Potassium-Ion Batteries.

Angew Chem Int Ed Engl

December 2024

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.

View Article and Find Full Text PDF

This paper describes a ferric nitrene/photoredox dual-catalyzed anti-Markovnikov ring-opening of epoxides under neutral conditions for providing α-substituted acetophenones. A DFT-based calculation supported the reaction regioselectivity. The catalytic system could also be applied to the formation of C-O and C-N bonds nucleophilic functionalization of benzylic C-H bonds.

View Article and Find Full Text PDF

The structures of the title compounds 2-hy-droxy-'-methyl-acetohydrazide, , and 2-hy-droxy--methyl-acetohydrazide, , both CHNO, as regioisomers differ in the position of the methyl group relative to the N atoms in 2-hy-droxy-acetohydrazide. In the structure of , the 2-hy-droxy-acetohydrazide core [OH-C-C(=O)-NH-NH] is almost planar and the methyl group is rotated relative to this plane. As opposed to , in the structure of all non-hydrogen atoms lie in the same plane.

View Article and Find Full Text PDF

We report a visible-light-assisted tandem oxidative 5--dig cyclization of 1,6-enynes for the synthesis of aminated C-3 aryloylated benzofuran, furopyridine, benzothiophene, and indole derivatives. The nitrogen-centered radical generated in situ from -aminopyridinium salt initiates the consecutive formation of C-N, C-C, and C-O bonds. The methodology exhibits good functional group tolerance and regioselectivity, furnishing products in good to excellent yields at room temperature.

View Article and Find Full Text PDF

Silver nanoparticle solutions (AgNPs) of some mushrooms: Pleurotus ostreatus, Agaricus bisporus and Agaricus campestris were prepared and characterized using Transmission Electron Microscopy (TEM), Fourier-Transform Infrared (FTIR) spectroscopy, X-Ray Diffraction (XRD) analysis and Energy Dispersive X-ray (EDX) spectroscopy. Each of the myco-sythesized AgNPs was plated against strains of Aspergillus flavus and A. ochraceous, at 5, 10 and 15% concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!