Objective: To study the response of myocardial ischemia/reperfusion injury (MI/RI) in rats to simulated geomagnetic activity.
Methods: In a simulated strong geomagnetic outbreak, the MI/RI rat models were radiated, and their area of myocardial infarction, hemodynamic parameters, creatine kinase (CK), lactate dehydrogenase (LDH), melatonin, and troponin I values were measured after a 24-hour intervention.
Results: Our analysis indicates that the concentrations of troponin I in the geomagnetic shielding+operation group were lower than in the radiation+operation group (P<0.05), the concentrations of melatonin in the shielding+operation group and normal+operation group were higher than in the radiation + operation group (P<0.01), and the concentrations of CK in the shielding + operation group were lower than in the radiation + operation group and normal + operation group (P<0.05). Left ventricular developed pressure (LVDP) and ± dP/dtmax in the radiation+operation group were lower than in the shielding + operation group and normal+operation group (P<0.01). Left ventricular end-diastolic pressure (LEVDP) in the shielding + operation group was higher than in the normal + operation group (P<0.05). There was no significant difference in area of myocardial infarction and LDH between the shielding + operation group and the radiation + operation group.
Conclusion: Our data suggest that geomagnetic activity is important in regulating myocardial reperfusion injury. The geomagnetic shielding has a protective effect on myocardial injury, and the geomagnetic radiation is a risk factor for aggravating the cardiovascular and cerebrovascular diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6894027 | PMC |
http://dx.doi.org/10.21470/1678-9741-2018-0306 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!