Background: Rice (Oryza sativa L.) is one of the major staple food crops consumed globally. However, rice production is severely affected by high salinity levels, particularly at the seedling stage. A good solution would be the development of an efficient screening methodology to identify genotypes possessing genes for salt tolerance.
Result: A new salinity tolerance screening technique using rice seedlings in pot-culture was tested. This method controls soil heterogeneity by using pure sand as a growth medium and minimizes unexpected extreme weather conditions with a movable shelter. Seventy-four rice genotypes were screened at three salinity treatments including high salt stress (electrical conductivity (EC) 12 dSm), moderate salt stress (EC 6 dSm), and control (no salt stress), imposed 1 week after emergence. Several shoot and root morpho-physiological traits were measured at 37 days after sowing. A wide range of variability was observed among genotypes for measured traits with root traits being identified as the best descriptors for tolerance to salt stress conditions. Salt stress response indices (SSRI) were used to classify the 74 rice genotypes; 7 genotypes (9.46%) were identified as salt sensitive, 27 (36.48%) each as low and moderately salt tolerant, and 13 (17.57%) as highly salt tolerant. Genotypes FED 473 and IR85427 were identified as the most salt tolerant and salt sensitive, respectively. These results were further confirmed by principal component analysis (PCA) for accuracy and reliability.
Conclusion: Although tolerant genotypes still need to be confirmed in field studies and tolerance mechanisms identified at the molecular level, information gained from this study could help rice breeders and other scientists to accelerate breeding by selecting appropriate donor parents, progenies and potential genotypes at early growth stages necessary for salinity tolerance research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667605 | PMC |
http://dx.doi.org/10.1186/s12284-019-0317-7 | DOI Listing |
Choosing the appropriate reference genes for quantitative real-time PCR (qRT-PCR) is very important for accurately evaluating expression of target genes. L. is a widely used horticultural plant with high ornamental value, which also shows a strong ability to tolerate abiotic stresses.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Dept. of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, Jinan University, Guangzhou 510632, China. Electronic address:
As an essential B vitamin, folate participates in one‑carbon metabolism. The 5-methyltetrahydrofolate (5-MTHF) avoids the drawbacks associated with folic acid and native folylpolyglutamate folate in food, thereby emerging as a superior alternative to folate supplement. To enhance the stability and digestibility of 5-MTHF, nanoliposome (NL) was modified using a layer-by-layer self-assembly method with chitosan (CH) and pectin (P).
View Article and Find Full Text PDFPlant Physiol
January 2025
Institute of Biology, University of Graz, Graz, Austria.
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!