FSH1 overexpression triggers apoptosis in Saccharomyces cerevisiae.

Antonie Van Leeuwenhoek

Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.

Published: December 2019

FSH1 belongs to the family of serine hydrolases in yeast and is homologous to the human ovarian tumor suppressor gene (OVAC2). Our preliminary results showed that cells lacking Fsh1p exhibit an increase in cell growth, and a decrease in the expression of AIF1 and NUC1 (apoptosis responsive genes) when compared to the wild type cells. Growth inhibition of cells overexpressing FSH1 is due to induction of cell death associated with cell death markers typical of mammalian apoptosis namely DNA fragmentation, phosphatidylserine externalization, ROS accumulation, Cytochrome c release, and altered mitochondrial membrane potential. When wild type cells were overexpressed with FSH1 there was up regulation of AIF1 level when compared to control cells suggesting that overexpression of FSH1 regulated cell death in yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-019-01310-7DOI Listing

Publication Analysis

Top Keywords

cell death
12
wild type
8
type cells
8
fsh1
5
cells
5
fsh1 overexpression
4
overexpression triggers
4
triggers apoptosis
4
apoptosis saccharomyces
4
saccharomyces cerevisiae
4

Similar Publications

Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.

View Article and Find Full Text PDF

Central Nervous System Response Against Ionizing Radiation Exposure: Cellular, Biochemical, and Molecular Perspectives.

Mol Neurobiol

January 2025

Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.

Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death.

View Article and Find Full Text PDF

Ubiquitin-specific protease 7 exacerbates acute pancreatitis progression by enhancing ATF4-mediated autophagy.

In Vitro Cell Dev Biol Anim

January 2025

Department of General Surgery, Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, P.R. China.

Acute pancreatitis (AP) is a serious inflammatory disease with high incidence rate and mortality. It was confirmed that overactivation of autophagy in acinar cells can increase the risk of AP. Nevertheless, the regulatory mechanism of autophagy in AP is unclear.

View Article and Find Full Text PDF

Objectives: Immune checkpoint inhibitor (ICI)-containing treatment is currently prescribed as first-line treatment for all patients with advanced non-small cell lung cancer (NSCLC) without targetable driver mutations. However, only 30-45% of patients show no progression within 12 months after treatment start. Various biomarkers are being studied to save costly and potentially harmful treatment in non-responders.

View Article and Find Full Text PDF

Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!