AI Article Synopsis

  • Gold nanoparticles are being used in engineering and medical sciences due to their unique properties, particularly surface plasmon resonance and high density, which enhance cellular uptake.
  • The research explores a non-viral gene transfer method utilizing gold nanoparticles functionalized with organic polymers, specifically using sodium borohydride and chitosan oligosaccharides for synthesis.
  • Transfection efficiency experiments showed that nanoparticles conjugated with chitosan oligosaccharides achieved a 60% transfection rate in cell cultures, highlighting their potential in gene therapy applications.

Article Abstract

Currently, gold nanoparticles have found applications in engineering and medical sciences, taking advantage from their properties and characteristics. Surface plasmon resonance, for instance, is one of the main features for optical applications and other physical properties, like high density, that represents the key for cellular uptake. Among other applications, in the medical field, some diseases may be treated by using gene therapy, including monogenetic or polygenetic disorders and infections. Gene adding, suppression, or substitution is one of the many options for genetic manipulation. This work explores an alternative non-viral method for gene transfer by using gold nanoparticles functionalized with organic polymers; two routes of synthesis were used: one of them with sodium borohydride as reducing agent and the other one with chitosan oligosaccharide as reducing and stabilizing agent. Gold nanoparticles conjugated with chitosan, acylated chitosan and chitosan oligosaccharide, were used to evaluate transfection efficiency of plasmid DNA into cell culture (HEK-293). Physical and chemical properties of gold nanocomposites were characterized by using UV-Vis Spectroscopy, ξ-potential, and transmission electron microscopy. Furthermore, the interaction between gold nanoparticles and plasmid DNA was demonstrated by using agarose gel electrophoresis. Transfection tests were performed and evaluated by β-galactosidase activity and green fluorescence protein expression. The percentage of transfection obtained with chitosan, acylated chitosan, and chitosan oligosaccharide were of 27%, 33%, and 60% respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667606PMC
http://dx.doi.org/10.1186/s11671-019-3083-yDOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
20
chitosan oligosaccharide
16
chitosan chitosan
12
chitosan
10
chitosan acylated
8
acylated chitosan
8
plasmid dna
8
gold
6
nanoparticles chitosan
4
chitosan n-acylated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!