A novel method of coupling electrochemistry (EC) with mass spectrometry (MS) is illustrated with a paper-based electrochemical cell supported by carbon nanotubes (CNTs). The electrochemically formed ions, created at appropriate electrochemical potentials, are ejected into the gas phase from the modified paper, without the application of additional potential. The electrochemical cell was fabricated by using a rectangular CNT-coated Whatman 42 filter paper with printed electrodes, using silver paste. This was used for studying the electrochemical conversion of thiols to disulfides, and the functionalization of polycyclic aromatic hydrocarbons (PAHs), which involve S-S and C-C bond formations, respectively. We also demonstrate the versatility of the set-up by utilizing it for the detection of radical cations of metallocenes, monitoring the oxidation of sulfides through the detection of reactive intermediates, and the detection of radical cations of PAHs, all of which occur at specific applied potentials. Finally, the applicability of this technique for qualitative and quantitative analyses of environmentally relevant molecules has been demonstrated by studying the electrochemical oxidation of glucose (Glu) to gluconic acid (GlcA) and saccharic acid (SacA).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9an00791aDOI Listing

Publication Analysis

Top Keywords

mass spectrometry
8
electrochemical cell
8
studying electrochemical
8
detection radical
8
radical cations
8
electrochemical
6
situ monitoring
4
monitoring electrochemical
4
electrochemical reactions
4
reactions cnt-assisted
4

Similar Publications

Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.

View Article and Find Full Text PDF

Characterization of insulin and bile acid complexes in liposome by different mass spectrometry techniques.

Anal Bioanal Chem

January 2025

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.

View Article and Find Full Text PDF

Although an ongoing understanding of psoriasis vulgaris (PV) pathogenesis, little is known about the proteomic differences between moderate and severe psoriasis. In this cross-sectional study, we evaluated the proteomic differences between moderate and severe psoriasis using data-independent acquisition mass spectrometry (DIA-MS). 173 differentially expressed proteins (DEPs) were significantly differentially expressed between the two groups.

View Article and Find Full Text PDF

Phosphorylation-dependent WRN-RPA interaction promotes recovery of stalled forks at secondary DNA structure.

Nat Commun

January 2025

Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.

The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.

View Article and Find Full Text PDF

Multimodal imaging by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI MSI) and microscopy holds potential for understanding pathological mechanisms by mapping molecular signatures from the tissue microenvironment to specific cell populations. However, existing software solutions for MALDI MSI data analysis are incomplete, require programming skills and contain laborious manual steps, hindering broadly applicable, reproducible, and high-throughput analysis to generate impactful biological discoveries. Here, we present msiFlow, an accessible open-source, platform-independent and vendor-neutral software for end-to-end, high-throughput, transparent and reproducible analysis of multimodal imaging data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!