The diversity of fungi allows for their colonisation in different environments, including wood destined for power generation, with an ability to degrade or hinder its use. Torrefaction or pre-carbonisation, a low oxygenation heat treatment with temperatures between 200 and 300 °C, accumulates carbon and lignin, decreases hygroscopicity, increases energy efficiency and reduces the wood attractiveness to xylophagous microorganisms. This work aimed to study the resistance of Eucalyptus urophylla wood chips, submitted to torrefaction temperatures of 180, 220 and 260 °C for 20 minutes, to xylophagous fungi, according to the ASTM D-2017 method (2005). The white rot fungi Phanerochaete chrysosporium, Pleurotus ostreatus and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum were used. After 12 weeks of exposure, the mass losses of wood samples in natura and torrified at 180 °C attacked by Pleurotus ostreatus and Trametes versicolor was higher. Torrefaction increased the resistance to fungi; the treatment at 260 °C was the most efficient with lower mass losses caused by fungi attacks and, consequently, greater resistance to the fungi tested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667691 | PMC |
http://dx.doi.org/10.1038/s41598-019-47398-9 | DOI Listing |
The European Commission requested the EFSA Panel on Plant Health to deliver a risk assessment on the likelihood of pest freedom from regulated EU quarantine pests, with emphasis on and its vectors spp. of debarked conifer wood chips fumigated with sulfuryl fluoride as proposed by the United States (US) and as outlined in ISPM 28 - PT23 of sulfuryl fluoride (SF) fumigation treatment for nematodes and insects in debarked wood. The assessment considered the different phases in the wood chips' production, with special emphasis on the SF treatment.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Energy Systems Engineering, Faculty of Engineering and Architecture, Burdur Mehmet Akif Ersoy University, 15030, Burdur, Turkey.
In this study, the effect of additives on particulate matter (PM) and flue gas emissions during the co-combustion of poultry waste and pine woodchips in air and oxy-fuel combustion conditions was examined. The appropriate additive for the fuel mixture to reduce PM emissions has been selected by a fast screening method based on thermogravimetric analysis (TGA) in oxygen environment. Among the additives CaHPO, MgCO, MnCO, MgPO, kaolin, CaO, and Zn, the most suitable ones were determined as Zn and MgCO.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
The extraction of polysaccharides from wood by-products is recognized as a green re-utilization approach to shape a recycling-oriented society. In this research, we identified the structural properties of arabinogalactan (AG) extracted from Larix sibirica Ledeb wood chips and verified its efficacy as an additive in broiler framing. Results showed that the molecular weight of AG is 19.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Technology of Building Materials and Components, Faculty of Civil Engineering, Brno University of Technology, 602 00 Brno, Czech Republic.
Limestone (LS) and stabilised secondary spruce chips (SCs) utilisation in wood-cement composites is still an unexplored area. Therefore, the main objective of the research presented here is the assessment of the long-term behaviour of cement-bonded particleboards (CBPs) modified by LS and SCs. Cement (CE) was replaced by 10% of LS, and spruce chips by 7% of SCs.
View Article and Find Full Text PDFArh Hig Rada Toksikol
December 2024
Pio XI Hospital, Clinical Unit of Occupational Health, Desio, Italy.
In this study we monitored exposure to airborne dust in workers performing various tasks at two biomass-fuelled thermal power plants (27 and 46 MW) over six years. The plants are mainly fuelled by forest wood chips and, to a lesser extent, by agro-food products, with annual consumption of about 300 and 450 kt. We focused on inhalable wood dust because of its potential carcinogenicity to humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!