UvrD helicase activation by MutL involves rotation of its 2B subdomain.

Proc Natl Acad Sci U S A

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110

Published: August 2019

UvrD is a superfamily 1 helicase/translocase that functions in DNA repair, replication, and recombination. Although a UvrD monomer can translocate along single-stranded DNA, self-assembly or interaction with an accessory protein is needed to activate its helicase activity in vitro. Our previous studies have shown that an MutL dimer can activate the UvrD monomer helicase in vitro, but the mechanism is not known. The UvrD 2B subdomain is regulatory and can exist in extreme rotational conformational states. By using single-molecule FRET approaches, we show that the 2B subdomain of a UvrD monomer bound to DNA exists in equilibrium between open and closed states, but predominantly in an open conformation. However, upon MutL binding to a UvrD monomer-DNA complex, a rotational conformational state is favored that is intermediate between the open and closed states. Parallel kinetic studies of MutL activation of the UvrD helicase and of MutL-dependent changes in the UvrD 2B subdomain show that the transition from an open to an intermediate 2B subdomain state is on the pathway to helicase activation. We further show that MutL is unable to activate the helicase activity of a chimeric UvrD containing the 2B subdomain of the structurally similar Rep helicase. Hence, MutL activation of the monomeric UvrD helicase is regulated specifically by its 2B subdomain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697780PMC
http://dx.doi.org/10.1073/pnas.1905513116DOI Listing

Publication Analysis

Top Keywords

uvrd helicase
12
uvrd monomer
12
uvrd subdomain
12
uvrd
11
helicase activation
8
activation mutl
8
subdomain uvrd
8
activate helicase
8
helicase activity
8
studies mutl
8

Similar Publications

UV-Induced DNA Repair Mechanisms and Their Effects on Mutagenesis and Culturability in .

bioRxiv

November 2024

William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.

Mutagenic processes drive evolutionary progress, with ultraviolet (UV) radiation significantly affecting evolution. Despite extensive research on SOS response-mediated mutagenesis, UV-induced repair mechanisms remain complex, and their effects on cell survival and mutagenesis are not fully understood. We previously observed a near-perfect correlation between RecA-mediated SOS response and mutation levels in following UV treatment.

View Article and Find Full Text PDF

UvrD-family helicases are superfamily 1A motor proteins that function during DNA replication, recombination, repair, and transcription. UvrD family monomers translocate along single stranded (ss) DNA but need to be activated by dimerization to unwind DNA in the absence of force or accessory factors. However, prior structural studies have only revealed monomeric complexes.

View Article and Find Full Text PDF

The Role of SF1 and SF2 Helicases in Biotechnological Applications.

Appl Biochem Biotechnol

December 2024

Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China.

Helicases, which utilize ATP hydrolysis to separate nucleic acid duplexes, play crucial roles in DNA and RNA replication, repair, recombination, and transcription. Categorized into the major groups superfamily 1 (SF1) and superfamily 2 (SF2), alongside four minor groups, these proteins exhibit a conserved catalytic core indicative of a shared evolutionary origin while displaying functional diversity through interactions with various substrates. This review summarizes the structures, functions and mechanisms of SF1 and SF2 helicases, with an emphasis on conserved ATPase sites and RecA-like domains essential for their enzymatic and nucleic acid binding capabilities.

View Article and Find Full Text PDF

MutL Activates UvrD by Interaction Between the MutL C-terminal Domain and the UvrD 2B Domain.

J Mol Biol

June 2024

Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany. Electronic address:

UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch.

View Article and Find Full Text PDF

Subunit Communication within Dimeric SF1 DNA Helicases.

J Mol Biol

June 2024

Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO 63110, USA. Electronic address:

Monomers of the Superfamily (SF) 1 helicases, E. coli Rep and UvrD, can translocate directionally along single stranded (ss) DNA, but must be activated to function as helicases. In the absence of accessory factors, helicase activity requires Rep and UvrD homo-dimerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!