A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a human immuno-oncology therapeutic agent targeting HER2: targeted delivery of granzyme B. | LitMetric

Development of a human immuno-oncology therapeutic agent targeting HER2: targeted delivery of granzyme B.

J Exp Clin Cancer Res

Immunopharmacology and Targeted Therapy Laboratory, Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.

Published: July 2019

Background: Immunotherapeutic approaches designed to augment T and B cell mediated killing of tumor cells has met with clinical success in recent years suggesting tremendous potential for treatment in a broad spectrum of tumor types. After complex recognition of target cells by T and B cells, delivery of the serine protease granzyme B (GrB) to tumor cells comprises the cytotoxic insult resulting in a well-characterized, multimodal apoptotic cascade.

Methods: We designed a recombinant fusion construct, GrB-Fc-4D5, composed of a humanized anti-HER2 scFv fused to active GrB for recognition of tumor cells and internal delivery of GrB, simulating T and B cell therapy. We assessed the construct's antigen-binding specificity and GrB enzymatic activity, as well as in vitro cytotoxicity and internalization into target and control cells. We also assessed pharmacokinetic and toxicology parameters in vivo.

Results: GrB-Fc-4D5 was highly cytotoxic to Her2 positive cells such as SKBR3, MCF7 and MDA-MB-231 with IC values of 56, 99 and 27 nM, respectively, and against a panel of HER2+ cell lines regardless of endogenous expression levels of the PI-9 inhibitor. Contemporaneous studies with Kadcyla demonstrated similar levels of in vitro activity against virtually all cells tested. GrB-Fc-4D5 internalized rapidly into target SKOV3 cells within 1 h of exposure rapidly delivering GrB to the cytoplasmic compartment. In keeping with its relatively high molecular weight (160 kDa), the construct demonstrated a terminal-phase serum half-life in mice of 39.2 h. Toxicity studies conducted on BALB/c mice demonstrated no statistically significant changes in SGPT, SGOT or serum LDH. Histopathologic analysis of tissues from treated mice demonstrated no drug-related changes in any tissues examined.

Conclusion: GrB-Fc-4D5 shows excellent, specific cytotoxicity and demonstrates no significant toxicity in normal, antigen-negative murine models. This construct constitutes a novel approach against HER2-expressing tumors and is an excellent candidate for further development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668111PMC
http://dx.doi.org/10.1186/s13046-019-1333-6DOI Listing

Publication Analysis

Top Keywords

tumor cells
12
cells
9
mice demonstrated
8
grb
5
development human
4
human immuno-oncology
4
immuno-oncology therapeutic
4
therapeutic agent
4
agent targeting
4
targeting her2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!