Nucleation underlies the formation of many liquid-phase synthetic and natural materials with applications in materials chemistry, geochemistry, biophysics, and structural biology. Most liquid-phase nucleation processes are heterogeneous, occurring at specific nucleation sites at a solid-liquid interface; however, the chemical and topographical identity of these nucleation sites and how nucleation kinetics vary from site-to-site remain mysterious. Here we utilize liquid cell electron microscopy to unveil counterintuitive nanoscale nonuniformities in heterogeneous nucleation kinetics on a macroscopically uniform solid-liquid interface. Time-resolved electron microscopy imaging of silver nanoparticle nucleation at a water-silicon nitride interface showed apparently randomly located nucleation events at the interface. However, nanometric maps of local nucleation kinetics uncovered nanoscale interfacial domains with either slow or rapid nucleation. Interestingly, the interfacial domains vanished at high supersaturation ratio, giving way to rapid spatially uniform nucleation kinetics. Atomic force microscopy and nanoparticle labeling experiments revealed a topographically flat, chemically heterogeneous interface with nanoscale interfacial domains of functional groups similar in size to those observed in the nanometric nucleation maps. These results, along with a semiquantitative nucleation model, indicate that a chemically nonuniform interface presenting different free energy barriers to heterogeneous nucleation underlies our observations of nonuniform nucleation kinetics. Overall, our results introduce a new imaging modality, nanometric nucleation mapping, and provide important new insights into the impact of surface chemistry on microscopic spatial variations in heterogeneous nucleation kinetics that have not been previously observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b05225 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!