One of the most intriguing findings highlighted from G protein-coupled receptor (GPCR) crystallography is the presence, in many members of class A, of a partially hydrated sodium ion in the middle of the seven transmembrane helices (7TM) bundle. In particular, the human adenosine A receptor (A AR) is the first GPCR in which a monovalent sodium ion was crystallized in a distal site from the canonical orthosteric one, corroborating, from a structural point of view, its role as a negative allosteric modulator. However, the molecular mechanism by which the sodium ion influences the recognition of the A AR agonists is not yet fully understood. In this study, the supervised molecular dynamics (SuMD) technique was exploited to analyse the sodium ion recognition mechanism and how its presence influences the binding of the endogenous agonist adenosine. Due to a higher degree of flexibility of the receptor extracellular (EC) vestibule, we propose the sodium-bound A AR as less efficient in stabilizing the adenosine during the different steps of binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695830 | PMC |
http://dx.doi.org/10.3390/molecules24152752 | DOI Listing |
Astrobiology
January 2025
Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany.
The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.
View Article and Find Full Text PDFNano Lett
January 2025
Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal-sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials.
View Article and Find Full Text PDFBackground And Purpose: Polycystins (PKD2, PKD2L1) are voltage-gated and Ca -modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China.
This article discusses the study by Grubić Rotkvić on the mechanisms of action of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM) and heart failure (HF). T2DM and HF are highly comorbid, with a significantly increased prevalence of HF in patients with T2DM. SGLT2i exhibit potential in reducing hospitalization rates for HF and cardiovascular mortality through multiple mechanisms, including improving blood glucose control, promoting urinary sodium excretion, reducing sympathetic nervous system activity, lowering both preload and afterload on the heart, alleviating inflammation and oxidative stress, enhancing endothelial function, improving myocardial energy metabolism, and stabilizing cardiac ion homeostasis.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!