Groundwater is not only a vital resource, but also one of the largest terrestrial aquatic ecosystems on Earth. However, to date, ecological criteria are often not considered in routine groundwater monitoring, mainly because of the lack of suitable ecological assessment tools. Prokaryotic microorganisms are ubiquitous in groundwater ecosystems even under the harshest conditions, making them ideal bioindicators for ecological monitoring. We have developed a simple, inexpensive approach that enables ecological groundwater monitoring based on three microbiological parameters that can be easily integrated into existing routine monitoring practices: prokaryotic cell density (D) measured by flow cytometry; activity (A) measured as prokaryotic intracellular ATP concentrations using a simple cell-lysis-luminescence assay; and, as an optional parameter, the bioavailable carbon (C) measured as the concentration of assimilable organic carbon in a simple batch growth assay. We analyzed data for three case studies of different disturbances representing some of the main threats to groundwater ecosystems, i.e. organic contamination with hydrocarbons, surface water intrusion, and agricultural land use. For all three disturbances, disturbed samples could be reliably distinguished from undisturbed samples based on a single index value obtained from multivariate outlier analyses of the microbial variables. We could show that this multivariate approach allowed for a significantly more sensitive and reliable detection of disturbed samples compared to separate univariate outlier analyses of the measured variables. Furthermore, a comparison of non-contaminated aquifers from nine different regions across Germany revealed distinct multivariate signatures along the three microbial variables, which should be considered when applying our approach in practice. In essence, our approach offers a practical tool for the detection of disturbances of groundwater ecosystems based on microbial parameters which can be seamlessly extended in the future by additional parameters for higher sensitivity as well as flexibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.114902 | DOI Listing |
Environ Pollut
January 2025
College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, P.R. China.
Propyrisulfuron, a novel sulfonylurea herbicide, effectively suppresses intracellular acetolactate synthase activity for weed control, but its adsorption behavior in the soil environment remains unclear. To assess potential agroecosystem risks, the adsorption-desorption behavior and mechanism of propyrisulfuron in six typical agricultural soils of China were investigated using a batch equilibrium method, Density Functional Theory (DFT), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy equipped with Energy Dispersive X-ray (SEM-EDX) techniques. It is indicated that the adsorption-desorption of propyrisulfuron in six soils reached equilibrium at 36 hours under the optimum water-to-soil ratio (WSr) of 5:1.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an 710075, China; Shaanxi Provincial Land Engineering Construction Group, Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710075, China.
Surface greenness alters regional water storage by regulating hydrological processes, thereby modulating water constraints on ecosystem functions and feeding back sustainability. In semi-arid regions, excessive revegetation may exacerbate regional water resource depletion, intensify water limitations on ecosystems, and threaten long-term sustainability. However, these changes have not been adequately assessed.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
There is a major gap in the occurrence of mixed emerging contaminants, which hinders our efforts in exploring their behaviors and transport in environmental media, as well as their toxicity to human and ecosystem. This study assessed the occurrence and their correlations of mixed contamination by microplastics (MPs), per- and polyfluoroalkyl substances (PFASs), antibiotics, and antibiotic resistance genes (ARGs) in groundwater collected from a pharmaceutical and chemical industrial park. MPs, PFASs, antibiotics and ARGs were detected at all monitoring wells.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.
Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!