Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The staging of the central-chest lymph nodes is a major lung-cancer management procedure. To perform a staging procedure, the physician first uses a patient's 3D X-ray computed-tomography (CT) chest scan to interactively plan airway routes leading to selected target lymph nodes. Next, using an integrated EBUS bronchoscope (EBUS = endobronchial ultrasound), the physician uses videobronchoscopy to navigate through the airways toward a target node's general vicinity and then invokes EBUS to localize the node for biopsy. Unfortunately, during the procedure, the physician has difficulty in translating the preplanned airway routes into safe, effective biopsy sites. We propose an automatic route-planning method for EBUS bronchoscopy that gives optimal localization of safe, effective nodal biopsy sites. To run the method, a 3D chest model is first computed from a patient's chest CT scan. Next, an optimization method derives feasible airway routes that enables maximal tissue sampling of target lymph nodes while safely avoiding major blood vessels. In a lung-cancer patient study entailing 31 nodes (long axis range: [9.0 mm, 44.5 mm]), 25/31 nodes yielded safe airway routes having an optimal tissue sample size = 8.4 mm (range: [1.0 mm, 18.6 mm]) and sample adequacy = 0.42 (range: [0.05, 0.93]). Quantitative results indicate that the method potentially enables successful biopsies in essentially 100% of selected lymph nodes versus the 70-94% success rate of other approaches. The method also potentially facilitates adequate tissue biopsies for nearly 100% of selected nodes, as opposed to the 55-77% tissue adequacy rates of standard methods. The remaining nodes did not yield a safe route within the preset safety-margin constraints, with 3 nodes never yielding a route even under the most lenient safety-margin conditions. Thus, the method not only helps determine effective airway routes and expected sample quality for nodal biopsy, but it also helps point out situations where biopsy may not be advisable. We also demonstrate the methodology in an image-guided EBUS bronchoscopy system, used successfully in live lung-cancer patient studies. During a live procedure, the method provides dynamic real-time sample size visualization in an enhanced virtual bronchoscopy viewer. In this way, the physician vividly sees the most promising biopsy sites along the airway walls as the bronchoscope moves through the airways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820695 | PMC |
http://dx.doi.org/10.1016/j.compbiomed.2019.103361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!