Leptin administration into the hindbrain, and specifically the nucleus of the solitary tract, increases phosphorylated signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin receptor activation, in hypothalamic nuclei known to express leptin receptors. The ventromedial nucleus of the hypothalamus (VMH) shows the greatest response, with a threefold increase in pSTAT3. This experiment tested the importance of VMH leptin receptor-expressing neurons in mediating weight loss caused by fourth ventricle (4V) leptin infusion. Male Sprague-Dawley rats received bilateral VMH 75-nL injections of 260 ng/μL of leptin-conjugated saporin (Lep-Sap) or blank-saporin (Blk-Sap). After 23 days they were fitted with 4V infusion cannulas and 1 wk later adapted to housing in a calorimeter before they were infused with 0.9 μg leptin/day for 14 days. There was no effect of VMH Lep-Sap on weight gain or glucose clearance before leptin infusion. Leptin inhibited food intake and respiratory exchange ratio in Blk-Sap but not Lep-Sap rats. Leptin had no effect on energy expenditure or brown adipose tissue temperature of either group. Inguinal and epididymal fat were significantly reduced in leptin-treated Blk-Sap rats, but the response was greatly attenuated in Lep-Sap rats. VMH pSTAT3 was increased in leptin-treated Blk-Sap but not Lep-Sap rats. These results support the concept that leptin-induced weight loss results from an integrated response across different brain areas. They also support previous reports that VMH leptin receptors do not play a significant role in maintaining energy balance in basal conditions but limit weight gain during positive energy balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842917 | PMC |
http://dx.doi.org/10.1152/ajpendo.00205.2019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!