Metabolic regulation by nucleotides has been examined in several bacteria within the context of the adenylate energy charge (EC) concept. The ECs of bacteria capable of only fermentative metabolism (Streptococcus lactis and the ATPase-less mutant Escherichia coli AN718) fell to less than 0.2 under carbon-limiting conditions, but the bacteria were able to step up the EC to greater than 0.8 upon exposure to nutrient sugars. Similarly, nongrowing E. coli 25922, whose EC had been artificially lowered to less than 0.1 by the addition of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), was able to immediately step up the EC to 0.8 to 0.9 upon the addition of glucose but was unable to respond to respiratory substrates. The EC of respiring bacteria (E. coli 25922 and Pseudomonas aeruginosa 27853) fell to 0.3 to 0.4 under certain limiting growth conditions, but the bacteria also responded immediately when challenged with succinate to give EC values greater than 0.8. These bacteria could not step up the EC with respiratory substrates in the presence of CCCP. For all bacteria, the loss of the ability to step up the EC was attributable to the loss of nutrient transport function. Mixtures of viable and HOCl-killed E. coli 25922 were able to step up the EC in proportion to the fraction of surviving cells. The data indicate that nucleotide phosphorylation levels are not regulatory in nongrowing bacteria but that the EC step-up achievable upon nutrient addition may be an accurate index of viability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC211341PMC
http://dx.doi.org/10.1128/jb.170.8.3655-3659.1988DOI Listing

Publication Analysis

Top Keywords

coli 25922
12
escherichia coli
8
pseudomonas aeruginosa
8
streptococcus lactis
8
adenylate energy
8
energy charge
8
bacteria
8
conditions bacteria
8
bacteria step
8
respiratory substrates
8

Similar Publications

Antimicrobial Potential of Secalonic Acids from Arctic-Derived INA 01369.

Antibiotics (Basel)

January 2025

Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia.

In this study, two compounds have been isolated from the Arctic-derived fungus INA 13460. Structural elucidation, performed using 2D NMR and HR-ESIMS data, has identified the compounds as stereoisomers of secalonic acids, dimeric tetrahydroxanthones. The absolute configurations of these stereoisomers have been determined through conformational NMR analysis and circular dichroism spectroscopy.

View Article and Find Full Text PDF

Selective Serotonin Reuptake Inhibitors: Antimicrobial Activity Against ESKAPEE Bacteria and Mechanisms of Action.

Antibiotics (Basel)

January 2025

Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil.

Multidrug-resistant bacteria cause over 700,000 deaths annually, a figure projected to reach 10 million by 2050. Among these bacteria, the ESKAPEE group is notable for its multiple resistance mechanisms. Given the high costs of developing new antimicrobials and the rapid emergence of resistance, drug repositioning offers a promising alternative.

View Article and Find Full Text PDF

Introduction: Nanobubble ozone stored in hyaluronic acid-decorated liposomes (patent application PCT/TR2022/050177) was used, and the Minimum Inhibitory Concentration (MIC) was found to be 1562 ppm. (patient isolate), (patient isolate), (MRSA) (ATCC12493), and (ATCC25922) bacteria, which are hospital-acquired and healthcare-associated infections, were used. A time-dependent efficacy study was conducted at 1600 ppm.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Synthesis, biological evaluation and validation of IMB-881 derivatives as anti-Gram-negative bacterial agents.

Bioorg Med Chem

January 2025

Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. Electronic address:

Infectious diseases caused by drug-resistant bacteria represent one of the most significant global public challenges of this century. There is an urgent need for the treatment of drug-resistant Gram-negative bacterial infections. A series of 3,4-dihydro-2H-[1,3]oxazino[5,6-h]quinoline derivatives were synthesized and evaluated for their antibacterial activity against Gram-negative bacteria including strains from ATCC and clinical isolates, initially revealing the structure-activity relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!