Sustained Release Strategy Designed for Lixisenatide Delivery to Synchronously Treat Diabetes and Associated Complications.

ACS Appl Mater Interfaces

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University, Shanghai 200438 , China.

Published: August 2019

Diabetes and its complications have become a global challenge of public health. Herein, we aimed to develop a long-acting delivery system of lixisenatide (Lixi), a glucose-dependent antidiabetic peptide, based on an injectable hydrogel for the synchronous treatment of type 2 diabetes mellitus (T2DM) and associated complications. Two triblock copolymers, poly(ε-caprolactone--glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone--glycolic acid) and poly(d,l-lactic acid--glycolic acid)-poly(ethylene glycol)-poly(d,l-lactic acid--glycolic acid) possessing temperature-induced sol-gel transitions, were synthesized by us. Compared to the two single-component hydrogels, their 1/1 mixture hydrogel not only maintained the temperature-induced gelation but also exhibited a steadier degradation profile in vivo. Both in vitro and in vivo release studies demonstrated that the mixture hydrogel provided the sustained release of Lixi for up to 9 days, which was attributed to balanced electrostatic interactions between the positive charges in the peptide and the negative charges in the polymer carrier. The hypoglycemic efficacy of Lixi delivered from the mixture hydrogel after a single subcutaneous injection into diabetic db/db mice was comparable to that of twice-daily administrations of Lixi solution for up to 9 days. Furthermore, three successive administrations of the abovementioned gel system within a month significantly increased the plasma insulin level, lowered glycosylated hemoglobin, and improved the pancreatic function of the animals. These results were superior or equivalent to those of twice-daily injections of Lixi solution for 30 days, but the number of injections was markedly reduced from 60 to 3. Finally, an improvement in hyperlipidemia, augmentation of nerve fiber density, and enhancement of motor nerve conduction velocity in the gel formulation-treated db/db mice indicated that the sustained delivery of Lixi arrested and even ameliorated diabetic complications. These findings suggested that the Lixi-loaded mixture hydrogel has great potential for the treatment of T2DM with significant improvements in the health and quality of life of patients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b10346DOI Listing

Publication Analysis

Top Keywords

mixture hydrogel
16
sustained release
8
associated complications
8
db/db mice
8
lixi solution
8
solution days
8
lixi
6
hydrogel
5
release strategy
4
strategy designed
4

Similar Publications

Calcium alginate reinforced zwitterionic double network hydrogel with mechanical robustness and antimicrobial activity for freshwater shrimp spoilage detection.

Food Res Int

January 2025

Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, Guangdong Province, China. Electronic address:

Hydrogel indicators promise to monitor food spoilage, but their poor mechanics can cause defects in transport. Herein, a novel zwitterionic double network (DN) hydrogel was developed by polymerizing arylamide and sulfobetaine methacrylate in an alginate-Ca system. This hydrogel exhibited enhanced mechanical properties, including a maximum 2087 % breaking elongation and 135 ± 12 kJ/m toughness, significantly outperforming the current zwitterionic DN hydrogels, which typically exhibit less than 1800 % breaking elongation, capable of supporting 150 g-136 times its own weight.

View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) are a promising target for research due to their small size and the resulting plasmonic properties, which depend, among other things, on the chosen reducer. This is important because removing excess substrate from the reaction mixture is problematic. However, Au NPs are an excellent component of various materials, enriching them with their unique features.

View Article and Find Full Text PDF

Activation Energy of SDS-Protein Complexes in Capillary Electrophoresis with Tetrahydroxyborate Cross-Linked Agarose Gels.

Gels

December 2024

Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Medicine, University of Debrecen, 4032 Debrecen, Hungary.

Hydrogels like agarose have long been used as sieving media for the electrophoresis-based analysis of biopolymers. During gelation, the individual agarose strands tend to form hydrogen-bond mediated double-helical structures, allowing thermal reversibility and adjustable pore sizes for molecular sieving applications. The addition of tetrahydroxyborate to the agarose matrix results in transitional chemical cross-linking, offering an additional pore size adjusting option.

View Article and Find Full Text PDF

Potential Unlocking of Biological Activity of Caffeic Acid by Incorporation into Hydrophilic Gels.

Gels

December 2024

Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania.

Caffeic acid, a phenolic compound with antioxidant and antimicrobial properties, shows promise in the dermatological field. The research aimed to incorporate caffeic acid into hydrophilic gels based on poloxamer 407, carbomer 980, and their mixture in order to enhance its biological activity. Different gel formulations were prepared using different concentrations of these polymers to optimize caffeic acid release characteristics.

View Article and Find Full Text PDF

Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!