The challenge of invasive mosquito vectors in the U.K. during 2016-2018: a summary of the surveillance and control of Aedes albopictus.

Med Vet Entomol

Medical Entomology and Zoonoses Ecology Group, Emergency Response Department Science and Technology, Public Health England, Salisbury, U.K.

Published: December 2019

Mosquito-borne diseases resulting from the expansion of two key vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), continue to challenge whole regions and continents around the globe. In recent years there have been human cases of disease associated with Chikungunya, dengue and Zika viruses. In Europe, the expansion of Ae. albopictus has resulted in local transmission of Chikungunya and dengue viruses. This paper considers the risk that Ae. aegypti and Ae. albopictus represent for the U.K. and details the results of mosquito surveillance activities. Surveillance was conducted at 34 points of entry, 12 sites serving vehicular traffic and two sites of used tyre importers. The most common native mosquito recorded was Culex pipiens s.l. (Diptera: Culicidae). The invasive mosquito Ae. albopictus was detected on three occasions in southern England (September 2016, July 2017 and July 2018) and subsequent control strategies were conducted. These latest surveillance results demonstrate ongoing incursions of Ae. albopictus into the U.K. via ground vehicular traffic, which can be expected to continue and increase as populations in nearby countries expand, particularly in France, which is the main source of ex-continental traffic.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mve.12396DOI Listing

Publication Analysis

Top Keywords

invasive mosquito
8
aedes albopictus
8
diptera culicidae
8
chikungunya dengue
8
vehicular traffic
8
challenge invasive
4
mosquito
4
mosquito vectors
4
vectors 2016-2018
4
2016-2018 summary
4

Similar Publications

is of great public health concern because of its vectorial capacity to transmit various arboviruses such as Zika, yellow fever, dengue, and chikungunya. In California, its expanding geographic distribution has been unrestrained. This urgently calls for innovative tools such as the use of sterile insect technique (SIT) to strengthen invasive control.

View Article and Find Full Text PDF

Unraveling the Molecular Mechanisms of Mosquito Salivary Proteins: New Frontiers in Disease Transmission and Control.

Biomolecules

January 2025

Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.

Mosquito-borne diseases are a group of illnesses caused by pathogens transmitted by mosquitoes, and they are globally prevalent, particularly in tropical and subtropical regions. Pathogen transmission occurs during mosquito blood feeding, a process in which mosquito saliva plays a crucial role. Mosquito saliva contains a variety of biologically active proteins that facilitate blood feeding by preventing blood clotting, promoting vasodilation, and modulating the host's immune and inflammatory responses.

View Article and Find Full Text PDF

Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.

View Article and Find Full Text PDF

Background: , a malaria mosquito originally from South Asia and the Middle East, has been expanding across both Asia and Africa in recent decades. The invasion of this species into sub-Saharan Africa is of particular concern given its potential to increase malaria burden, especially in urban environments where thrives. Whilst surveillance of this vector in Africa has recently increased markedly there is a need to review the existing methods of control so that we can stop, rather than simply monitor, its spread in Africa.

View Article and Find Full Text PDF

The distribution and abundance of ectothermic mosquitoes are strongly affected by temperature, but mechanisms remain unexplored. We describe the effect of temperature on the transcriptome of Anopheles stephensi, an invasive vector of human malaria. Adult females were maintained across a range of mean temperatures (20 °C, 24 °C and 28 °C), with daily fluctuations of +5 °C and -4 °C at each mean temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!