Adenosine receptor subtypes, first described 40 years ago, are known to regulate diverse biological functions and have a role in various conditions, such as cerebral and cardiac ischemia, immune and inflammatory disorders and cancer. In the brain, they limit potentially dangerous over excitation, but also regulate mechanisms essential in sleep and psychiatric disorders. In this review, we discuss the role of adenosine receptors in mood and anxiety disorders. Activation of A receptors is associated with increased depression-like symptoms, while increased A receptors signaling elicits rapid antidepressant effects. Indeed, several lines of evidence demonstrate that the therapeutic effects of different non-pharmacological treatments of depression, like sleep deprivation and electroconvulsive therapy are mediated by A receptor up-regulation or activation. In addition, A receptors may also play a role in the antidepressant effects of transcranial direct current stimulation and deep brain stimulation. As a potential downstream mechanism, which facilitates the antidepressant effects of A receptors, we propose a crosstalk between adenosinergic and glutamatergic systems mediated via synaptic plasticity protein Homer1a and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, adenosine receptors are also involved in the control of circadian rhythms, sleep homeostasis and some neuro-immunological mechanisms, all of them implicated in mood regulation. Antagonists of adenosine receptors such as caffeine have general anxiogenic effects. In particular, A receptors appear to have an important role in the pathophysiology of anxiety disorders. Taken together, the results discussed here indicate that the adenosinergic system is involved in both the etiology and the treatment of mood and anxiety disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.14841 | DOI Listing |
Oncol Res
January 2025
Department of Physiology, China Medical University, Taichung, 404328, Taiwan.
Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.
View Article and Find Full Text PDFPharmacol Ther
January 2025
School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects.
View Article and Find Full Text PDFMAGMA
January 2025
Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359, Bremen, Germany.
Objectives: Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored.
View Article and Find Full Text PDFEur J Immunol
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India.
Parkinson's disease (PD) is a progressive neurological condition characterized by both dopaminergic and non-dopaminergic brain cell loss. Patients with Parkinson's disease have tremors as a result of both motor and non-motor symptoms developing. Idiopathic Parkinson's disease (idiopathic PD) prevalence is increasing in people over 60.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!