Brain-computer interface (BCI) technology is rapidly developing and changing the paradigm of neurorestoration by linking cortical activity with control of an external effector to provide patients with tangible improvements in their ability to interact with the environment. The sensor component of a BCI circuit dictates the resolution of brain pattern recognition and therefore plays an integral role in the technology. Several sensor modalities are currently in use for BCI applications and are broadly either electrode-based or functional neuroimaging-based. Sensors vary in their inherent spatial and temporal resolutions, as well as in practical aspects such as invasiveness, portability, and maintenance. Hybrid BCI systems with multimodal sensory inputs represent a promising development in the field allowing for complimentary function. Artificial intelligence and deep learning algorithms have been applied to BCI systems to achieve faster and more accurate classifications of sensory input and improve user performance in various tasks. Neurofeedback is an important advancement in the field that has been implemented in several types of BCI systems by showing users a real-time display of their recorded brain activity during a task to facilitate their control over their own cortical activity. In this way, neurofeedback has improved BCI classification and enhanced user control over BCI output. Taken together, BCI systems have progressed significantly in recent years in terms of accuracy, speed, and communication. Understanding the sensory components of a BCI is essential for neurosurgeons and clinicians as they help advance this technology in the clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1093/neuros/nyz286DOI Listing

Publication Analysis

Top Keywords

bci systems
16
bci
10
sensor modalities
8
brain-computer interface
8
cortical activity
8
modalities brain-computer
4
technology
4
interface technology
4
technology comprehensive
4
comprehensive literature
4

Similar Publications

Bioaugmented design and functional evaluation of low damage implantable array electrodes.

Bioact Mater

May 2025

State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China.

Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.

View Article and Find Full Text PDF

Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.

View Article and Find Full Text PDF

RMKD: Relaxed matching knowledge distillation for short-length SSVEP-based brain-computer interfaces.

Neural Netw

January 2025

Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), 138632, Singapore. Electronic address:

Accurate decoding of electroencephalogram (EEG) signals in the shortest possible time is essential for the realization of a high-performance brain-computer interface (BCI) system based on the steady-state visual evoked potential (SSVEP). However, the degradation of decoding performance of short-length EEG signals is often unavoidable due to the reduced information, which hinders the development of BCI systems in real-world applications. In this paper, we propose a relaxed matching knowledge distillation (RMKD) method to transfer both feature-level and logit-level knowledge in a relaxed manner to improve the decoding performance of short-length EEG signals.

View Article and Find Full Text PDF

Enhancing motor disability assessment and its imagery classification is a significant concern in contemporary medical practice, necessitating reliable solutions to improve patient outcomes. One promising avenue is the use of brain-computer interfaces (BCIs), which establish a direct communication pathway between users and machines. This technology holds the potential to revolutionize human-machine interaction, especially for individuals diagnosed with motor disabilities.

View Article and Find Full Text PDF

CUOB (co-existent underactive overactive bladder) syndrome is a clinical entity that embraces storage and emptying symptoms, not strictly correlated with urodynamic findings. We assessed the differences between patients diagnosed with CUOB with/without cystocele. The study group was allocated from 2000 women who underwent urodynamic studies between 2008 and 2016.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!