Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metal based drugs are important class of chemotherapeutic agents that have the potential to circumvent drug resistance. Increasing drug resistance, treatment failures and limited treatment options necessitates the development of new therapeutic drugs with different mechanisms of action. Towards this direction, we synthesized a series of isatin based mixed ligand complexes of [Cu(dbm)LClHO] , [Co(dbm)LCl] and [Ni(dbm)LClHO] and evaluated their antifungal activity alone and in combination with fluconazole (FLC) against seven different isolates. The insight mechanism of antifungal action was revealed by studying apoptosis via terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The study revealed that all these compounds showed antifungal activity at varying concentrations with as the most potent compound with minimum inhibitory concentration ranging from 0.5-8 μg/mL and minimum fungicidal concentration ranging from 4-16 μg/mL. Upon combination with FLC, most of the interactions were either synergistic (54 %) or additive (32 %) with no antagonistic combination against any of the tested isolate. The study on their mechanism of action revealed that these compounds show apoptotic effect on at sub-inhibitory concentrations, suggesting that strategies to target this process may augment the current antifungal treatment modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639752 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e02055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!