The human epidermal growth factor receptor 2 (HER2) is expressed in various human cancers including thyroid cancers (TC) and is used as a diagnostic marker and therapeutic target. Canine TC (cTC), the most common endocrine malignancy in dogs, shows a high metastasis rate, and HER2-targeted therapy could be a candidate for treatment. Here, we immunohistochemically evaluated HER2 expression in 21 paraffin-embedded cTC tissues and scored the degree of expression based on intensity and positivity (score: 0-3+). Four samples (19%) scored 3+; 6 (29%), 2+; 7 (33%), 1+; and 4 (19%), 0. Therefore, 48% of the cTC tissues were HER2 positive (scored ≥2+). These data may lead to further evaluation of the role of HER2 in cTC as a mechanism of malignancy and a therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6639692 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e02004 | DOI Listing |
Gastric Cancer
January 2025
Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.
Gene
January 2025
Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa City, Chiba, Japan.
Purpose Of Review: Human epidermal growth factor receptor 2 (HER2) is a critical target in advanced gastric cancer (AGC). This review highlights the current treatment landscape, lessons learned from past clinical trials, and prospects for future treatment strategies for HER2-positive AGC.
Recent Findings: Trastuzumab had been the standard treatment for HER2-positive AGC for a decade, and subsequently, trastuzumab deruxtecan, an antibody-drug conjugate (ADC), emerged with an impressive response.
Biochem Biophys Res Commun
December 2024
Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997, Moscow, Russia. Electronic address:
Molecular targeted cancer therapy is a rapidly developing field, driving progress toward greater treatment efficacy. However, targeted monotherapy often fails due to the development of multidrug resistance in tumors. The combination of multiple targeted agents emerges as a possible solution to enhance treatment outcomes by activating different signaling pathways.
View Article and Find Full Text PDFEur J Cell Biol
December 2024
Université de Reims Champagne-Ardenne, INSERM, P3Cell, UMR-S 1250, Reims, France. Electronic address:
The tumor suppressor fragile histidine triad (FHIT) is frequently lost in non-small cell lung cancer (NSCLC). We previously showed that a down-regulation of FHIT causes an up-regulation of the activity of HER2 associated to an epithelial-mesenchymal transition (EMT) and that lung tumor cells harboring a FHIT/pHER2 phenotype are sensitive to anti-HER2 drugs. Here, we sought to decipher the FHIT-regulated HER2 signaling pathway in NSCLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!