Purpose: To verify the biomechanical importance with respect to the integrity of posteromedial cortex of femoral neck fracture (FNF) and demonstrate whether the modified fixation of cannulated screws (CSs) could increase the biomechanical strength.
Methods: A total of 24 left artificial femurs were randomly divided into three groups. The osteotomy was made in the center of the femoral neck at a 20° angle to the shaft axial. The posteromedial cortices of femoral neck were removed in groups B and C. In group A, 8 femurs with intact posteromedial cortex were fixed with three parallel partial thread screws (PTSs), forming a standard triangle. In group B, the femurs were stabilized with the same fixation of CSs like group A. In group C, two inferior PTSs were replaced by two fully thread screws (FTSs).
Results: The lower A-P and axial stiffness and load to failure along with higher axial displacement were found in group B compared with group A (p≤0.001 for all). Between groups B and C, the modified fixation of CSs increased A-P and axial stiffness and load to failure and reduced the axial displacement (p≤0.001 for all).
Conclusions: We verified that the comminuted posteromedial cortex affected the biomechanical strength adversely and resulted in higher displacement. The modified fixation of CSs characterized by two inferior FTSs could improve the biomechanical performance and buttress the femoral head fragment better.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642775 | PMC |
http://dx.doi.org/10.1155/2019/2584151 | DOI Listing |
J Clin Med
January 2025
Surgical Oncology Department, Emergency County Hospital Oradea, Strada Gheorghe Doja 65, 410169 Oradea, Romania.
: Sleeve gastrectomy (SG) is increasingly used to treat severe obesity in adolescents, but its effects on bone health during this critical period of bone accrual are not fully understood. This systematic review aims to evaluate the impact of SG on the bone mineral density (BMD), bone microarchitecture, marrow adipose tissue (MAT), and bone turnover markers in adolescents. : A comprehensive literature search was conducted to identify studies assessing bone health outcomes in adolescents undergoing SG.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Division of Nephrology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul 34098, Turkey.
: Bone and mineral disease (BMD) is a prevalent complication of advanced chronic kidney disease (CKD). The risk of fractures can be assessed via dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). This study aims to evaluate the effectiveness of two imaging modalities in identifying bone mineral status in individuals with pre-dialysis chronic renal disease and to assess their correlation with bone turnover markers.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
Valgus-impacted femoral neck fractures (OTA 31B1.1 and 31B1.2) are considered stable fractures with favorable outcomes compared to displaced fractures.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Ankara Etlik City Hospital, Ankara, Turkey.
Background: Cementless hip hemiarthroplasty is one of the options for the treatment of osteoporotic femoral neck fractures. Intraoperative periprosthetic femoral calcar fractures sometimes occur during the surgery, and the use of cerclage wiring to maintain the position and stability of the femoral stem and prevent the progression of the fracture. This study examines the outcomes of cerclage wiring to treat intraoperative periprosthetic calcar fractures in cementless hip hemiarthroplasty in osteoporotic femoral neck fractures.
View Article and Find Full Text PDFPLoS One
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!