Proteinogenic amino acids can be produced on or delivered to a planet impacting abiotic sources and consequently were likely present before the emergence of life on Earth. However, the role that these materials played in prebiotic scenarios remains an open question, in part because little is known about the survivability and reactivity of astrophysical organic compounds upon impact with a planetary surface. To this end, we use a force-matched semi-empirical quantum simulation method to study impacts of aqueous proteinogenic amino acids at conditions reaching 48 GPa and 3000 K. Here, we probe a relatively unstudied mechanism for prebiotic synthesis where sudden heating and pressurization causes condensation of complex carbon-rich structures from mixtures of glycine, the simplest protein-forming amino acid. These carbon-containing clusters are stable on short timescales and undergo a fundamental structural transition upon expansion and cooling from predominantly sp-bonded tetrahedral-like moieties to those that are more sp-bonded and planar. The recovered sp-bonded structures include large nitrogen containing polycyclic aromatic hydrocarbons (NPAHs) with a number of different functional groups and embedded bonded regions akin to oligo-peptides. A number of small organic molecules with prebiotic relevance are also predicted to form. This work presents an alternate route to gas-phase synthesis for the formation of NPAHs of high complexity and highlights the significance of both the thermodynamic path and local chemical self-assembly in forming prebiotic species during shock synthesis. Our results help determine the role of comets and other celestial bodies in both the delivery and synthesis of potentially significant life building compounds on early Earth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585877 | PMC |
http://dx.doi.org/10.1039/c9sc00155g | DOI Listing |
Environ Res
January 2025
Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil. Electronic address:
This study provides comprehensive overview of the current level, sources and human exposure risk to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014 - 2024). For all contaminants, urban concentrations exceeded that of rural/remote locations.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:
Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increased attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA. Electronic address:
Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) are recalcitrant organic pollutants often detected in stormwater. Various stormwater control measures (SCMs) can remove PAHs and PCBs by filtration, adsorption, and biodegradation. However, dissolved PAHs and PCBs remain present in the treated outflow of SCMs.
View Article and Find Full Text PDFChemosphere
January 2025
Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:
The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!