Background: Breast cancer is one of the most frequent women malignancies in the world. The cytochrome P450 1A1 () is a key enzyme in xenobiotics metabolism. Moreover, CYP1A1 plays a critical role in the etiology of breast cancer by involving in 2-hydroxylation of estrogen. Therefore, single-nucleotide polymorphisms (SNPs) of its coding gene have been verified to be important in cancer susceptibility. The aim of the study was to evaluate the association of M2 (A2455G) includes rs1048943 of this SNP polymorphism with the risk of breast cancer in Mazandaran province.
Methods: Ninety-six breast cancer patients with known clinicopathological characters and 110 healthy women as control were genotyped for M2 polymorphisms by the restriction fragment length polymorphism technique.
Results: The analysis of gene (polymorphism M2) showed that the frequency of homozygous wild genotypes (AA), heterozygous (AG), and mutant genotype (GG) in the patient group, respectively, 78%, 22%, and 0%, and also the frequency of genotypes AA, AG, and GG in healthy included 82%, 16%, and 2%, respectively. Statistical analysis by Logistic regression model at < 0.05 showed no significant correlation between polymorphisms in 1A1M2 and breast cancer risk (odds ratio = 0.84, confidence interval = 0.33-2.17).
Conclusions: The results indicated that the M2 allelic genotypes were significantly associated neither with breast cancer risk nor with clinicopathological characteristics in Mazandaran province.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592102 | PMC |
http://dx.doi.org/10.4103/ijpvm.IJPVM_57_18 | DOI Listing |
Sci Rep
December 2024
Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, China.
Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.
View Article and Find Full Text PDFMetaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.
View Article and Find Full Text PDFthe evolution of axillary management in breast cancer has witnessed significant changes in recent decades, leading to an overall reduction in surgical interventions. There have been notable shifts in practice, aiming to minimize morbidity while maintaining oncologic outcomes and accurate staging for newly diagnosed breast cancer patients. These advancements have been facilitated by the improved efficacy of adjuvant therapies.
View Article and Find Full Text PDFthe axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!