Introduction: Autologous platelet-rich plasma (PRP) is the fraction of blood plasma, with increased concentration of platelets, from baseline serum level. Growth factors (GFs) in PRP expedite the soft tissue and bony healing. However, estimation of their levels and role in healing had not been studied extensively. This study gives an insight to the quantification of platelet-derived GF-BB (PDGF-BB) present in PRP and its correlation with the clinical wound healing and bone regeneration.
Aims: This study aims to quantify PDGF-BB levels in PRP with its subsequent correlation with healing in dental regenerative surgeries.
Settings And Design: This was an experimental study including patients undergoing various dental regenerative surgeries.
Subjects And Methods: Autologous thrombin-activated PRP in the form of PRP gel was used in study group ( = 39) whereas no such intervention was given in control group ( = 30). PDGF-BB quantification was done in PRP samples using enzyme-linked immunosorbent assay. Clinicoradiological evaluation of healing was done in both the groups.
Statistical Analysis Used: Descriptive analysis, independent -test, Correlation regression analysis, and ANOVA.
Results: Mean platelet concentration achieved in PRP was 5.79 times the baseline count. Mean PDGF-BB concentration in PRP was 31.92 ± 10.47 ng/ml which significantly correlated ( < 0.05) with the PRP platelet count. Study group showed significant healing clinically ( < 0.05). Significant bone fill observed in study group at 3 and 6 months when compared to the baseline as well as control group. Furthermore, bone fill at 6 months showed linear correlation with PGDF-BB levels ( = 0. 80).
Conclusions: PRP led to enhanced bone regeneration and soft-tissue healing with former being directly related to higher concentration of PDGF-BB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580828 | PMC |
http://dx.doi.org/10.4103/ajts.AJTS_25_17 | DOI Listing |
Stem Cell Res Ther
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
Background: Orthodontic relapse, the undesired deviation of teeth from their corrected positions, remains a significant challenge in clinical orthodontics. Incomplete periodontal bone remodeling has been identified as a key factor in this process. Despite decades of research, currently there are no effective strategies to prevent relapse.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.
Background: Despite many years of investigation into mesenchymal stem cells (MSCs) and their potential for treating inflammatory conditions such as COVID-19, clinical outcomes remain variable due to factors like donor variability, different tissue sources, and diversity within MSC populations. Variations in MSCs' secretory and proliferation profiles, and their proteomic and transcriptional characteristics significantly influence their therapeutic potency, highlighting the need for enhanced characterization methods to better predict their efficacy. This study aimed to evaluate the biological characteristics of MSCs from different tissue origins, selecting the most promising line for further validation in a K18-hACE2 mouse model of SARS-CoV-2 infection.
View Article and Find Full Text PDFBone Res
January 2025
Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA.
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.
View Article and Find Full Text PDFContemp Clin Dent
December 2024
Department of Pediatric and Preventive Dentistry, GDC, Dibrugarh, Assam, India.
Regenerative endodontic therapy (RET) of young permanent teeth with necrotic pulps and apical periodontitis in young people, deciduous tooth pulp may be utilized as a natural, biologic scaffold. Recent developments in stem cell biology and material sciences are beneficial for new treatment methods. Previously traumatized and necrotic young permanent tooth was treated with RET protocol.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
Hydroxyapatite, renowned for its biocompatibility and osteoconductive properties, plays a fundamental role in bone regeneration owing to its resemblance to natural bone mineral, thus offering considerable potential for advancing tissue engineering strategies. In this article, the innovative integration of silicon ions into biogenic (bovine-derived) hydroxyapatite (SiBHA) via a tailored sol-gel process is reported. The resultant SiBHA scaffolds exhibited an interconnected microporous structure with a total porosity of 70% and pore dimensions ranging from 120 to 650 µm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!