AI Article Synopsis

  • The X-ray integral field unit (X-IFU) is a key component of the upcoming ATHENA space telescope, designed to enhance X-ray spectral resolution with up to 3840 individual sensors.
  • The study explores using indium 'bumps' on molybdenum nitride as superconducting interconnects, instead of traditional aluminum wirebonding, and finds variations in transition temperature related to the fabrication conditions.
  • Results indicate a minimum transition temperature of 3.14 K for the indium bumps at a specific bias current, and the research also details the development of flexible niobium microstrip wiring, aiming for efficient high-density connections for the X-IFU.

Article Abstract

The X-ray integral field unit (X-IFU) is a cryogenic spectrometer for the Advanced Telescope for High ENergy Astrophysics (ATHENA). ATHENA is a planned next-generation space-based X-ray observatory with capabilities that surpass the spectral resolution of prior missions. Proposed device designs contain up to 3840 transition edge sensors, each acting as an individual pixel on the detector, presenting a unique challenge for wiring superconducting leads in the focal plane assembly. In prototypes that require direct wiring, the edges of X-IFU focal plane have hosted aluminum wirebonding pads; however, indium (In) 'bumps' deposited on an interface layer such as molybdenum nitride (MoN) can instead be used as an array of superconducting interconnects. We investigated bumped MoN:In structures with different process cleans and layer thicknesses. Measurements of the resistive transitions showed variation of transition temperature as a function of bias and generally differed from the expected bulk of In (3.41 K). Observed resistance of the In bump structures at temperatures below the MoN transition (at 8.0 K) also depended on the varied parameters. For our proposed X-IFU geometry (10 μm of In mated to a 1-μm In bump), we measured a minimum of 3.14 K at a bias current of 3 mA and a normal resistance of 0.59 mΩ per interconnect. We also investigated the design and fabrication of superconducting niobium (Nb) microstrip atop flexible polyimide. We present a process for integrating In bumps with the flexible Nb leads to enable high-density wiring for the ATHENA X-IFU focal plane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662641PMC
http://dx.doi.org/10.1007/s10909-018-2019-8DOI Listing

Publication Analysis

Top Keywords

focal plane
12
x-ifu focal
8
fabrication flexible
4
superconducting
4
flexible superconducting
4
wiring
4
superconducting wiring
4
wiring high
4
high current-carrying
4
current-carrying capacity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!