This study reports the combined use of a rhamnolipid type biosurfactant (BS) along with phytoremediation and bioaugmentation (BA) for bioremediation of hydrocarbon-contaminated soils. Bacterial isolates obtained from hydrocarbon contaminated soil were screened for rhamnolipid production and isolate BS18, identified as , was selected for bioremediation experiments. Growth of BS18 in mineral salt medium (MSM) with diesel oil as the carbon source showed a maximum biomass of 8.2 g L, rhamnolipid production of 2.2 mg g cell dry weight, surface tension reduction of 28.6 mN/m and emulsification potential (EI%) of 65.6. Characterization of rhamnolipid based on Fourier transmittance infrared (FTIR) analysis confirmed the presence of OH, CH/CH, C=O, and COO stretching vibrations, respectively, which are distinctive features of rhamnolipid type BSs. In bioremediation experiments, the lowest hydrocarbon concentration of 2.1 mg g of soil for non-sterilized soil and 4.3 mg g of soil for sterilized soil was recorded in the combined application of rhamnolipid, phytoremediation, and BA. This treatment also yielded the highest hydrocarbon degrading bacterial population (6.4 Log Cfu g of soil), highest plant biomass (8.3 g dry weight plant), and the highest hydrocarbon uptake (512.3 mg Kg of plant).

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2019.1633254DOI Listing

Publication Analysis

Top Keywords

rhamnolipid production
12
phytoremediation bioaugmentation
8
bioaugmentation bioremediation
8
hydrocarbon contaminated
8
rhamnolipid type
8
bioremediation experiments
8
dry weight
8
highest hydrocarbon
8
rhamnolipid
7
soil
6

Similar Publications

Article Synopsis
  • The study focuses on using waste frying oil as a carbon source to produce cost-effective rhamnolipids, overcoming common production barriers.
  • Optimal conditions for rhamnolipid production were identified, resulting in a yield of 2.97 g/l at specific temperature, pH, and incubation time.
  • The research indicates that using Halopseudomonas sabulinigri OZK5 for biosurfactant production is a promising biotechnological approach due to its eco-friendliness and efficiency.
View Article and Find Full Text PDF

Introduction: Burkholderia thailandensis E264 is a non-pathogenic soil bacterium that produces rhamnolipids (RLs), which are utilised in various fields. Although studies have illustrated changes in RLs congeners in response to environmental factors, studies on the influence of temperature on the RLs congeners produced by B. thailandensis E264 are scarce.

View Article and Find Full Text PDF

In recent years, biosurfactants (BS) produced by various bacteria, fungi and yeast strains have attracted much interest because of their unique properties and potential applications in many industries ranging from bioremediation to agriculture and biomedical to cosmetics. Glycolipids are a popular group of BS that include rhamnolipids, sophorolipids, mannosylerythritol, trehalose lipids, xylolipids and cellobiose lipids. Lipopeptides e.

View Article and Find Full Text PDF

In the present study, biopolymer (chitosan and alginate)-reinforced rhamnolipid nanoparticles were prepared and represented as 'ALG-RHLP-NPs' and 'CHI-RHLP-NPs'. The sizes of the nanoparticles ranged from 150 to 300 nm. The encapsulation efficiencies of ALG-RHLP-NPs and CHI-RHLP-NPs were found to be 81.

View Article and Find Full Text PDF

Blast disease caused by is a devastating disease that limits rice grain production. Here, we synthesized rhamnolipid (RL) modified silica nanoparticles (SiONPs) based on the excellent antimicrobial activity of RL against various phytopathogens and the role of SiONPs in alleviating plant diseases and investigated the roles and mechanisms of RL@SiONPs application in controlling rice blast disease. Two-week-old rice seedlings were sprayed with 100 mL/L of different materials before pathogen inoculation, and blast incidence was investigated 5 days after inoculation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!