Magnetic mesoporous polymelamine formaldehyde nanocomposite-incorporating ZnO nanoparticles were successfully synthesized using solvothermal and sol-gel methods. Fourier-transform infrared spectrometry (FT-IR), X-ray diffraction, Brunauer-Emmett-Teller, vibrating sample magnetometer, thermogravimetric analysis, elemental analysis, transmission electron microscopy and field emission scanning electron microscopy techniques were then utilized for evaluation of nanocomposites. The as-prepared nanocomposite can be used as heterogeneous nanocatalyst with remarkable performance for A coupling reaction toward one-pot synthesis of propargylamine and its derivatives under solvent-less condition. In order to maximize the product yield, the variables, i.e., reaction time, temperature and catalyst amount, were optimized by using a statistical approach. The synthesized nanocomposite can be easily separated from the reaction medium and reused over and over, without significant changes in its catalytic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-019-09977-w | DOI Listing |
Org Lett
January 2025
State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.
KOBu-promoted [3 + 2] cycloaddition of dimethyl sulfoxide (DMSO) with fullerenes has been developed for facile and efficient one-pot synthesis of 1,2,3,4-cyclic sulfoxide-fused [60]/[70]fullerene dihydrides, which offers a versatile platform for the site-selective preparation of various fullerene multiadducts with a wide range of functional groups. The utility of these tetra-functionalized fullerenes is demonstrated by the successful application as electron-transport materials in perovskite solar cells.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.
View Article and Find Full Text PDFACS Omega
January 2025
School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
Seventeen 3-alkylaminoquinoxaline-2(1)-thiones and 3-alkyloxyquinoxaline-2(1)-thiones were prepared by a novel thionation protocol from the readily available quinoxaline-2,3-dione in excellent overall yields. This protocol starts with the chlorination of dione using thionyl chloride to give 2,3-dichloroquinoxaline followed by the reaction with equimolar amounts of -nucleophiles (primary amines and secondary amines) or -nucleophiles (phenols and alcohols) to principally afford 2-alkanamino-3-chloroquinoxalines or 2-alkyloxy-3-chloroquinoxalines, respectively. The chloroquinoxalines reacted with the thionation reagent -cyclohexyl dithiocarbamate cyclohexyl ammonium salt in ethanol under reflux to principally give the corresponding quinoxalin-2-yl cyclohexylcarbamodithioate that finally rearranges to give the corresponding thiones in 76-93% overall yields.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China. Electronic address:
Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-L), as a novel fire sensor.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China. Electronic address:
Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!