Purpose: Lung ultrasound is used for the diagnosis of pneumothorax, based on lung sliding abolition which is a qualitative and operator-dependent assessment. Speckle tracking allows the quantification of structure deformation over time by analysing acoustic markers. We aimed to test the ability of speckle tracking technology to quantify lung sliding in a selected cohort of patients and to observe how the technology may help the process of pneumothorax diagnosis.
Methods: We performed retrospectively a pleural speckle tracking analysis on ultrasound loops from patients with pneumothorax. We compared the values measured by two observers from pneumothorax side with contralateral normal lung side. The receiver operating characteristic (ROC) curve was constructed to evaluate the performance of maximal pleural strain to detect the lung sliding abolition. Diagnosis performance and time to diagnosis between B-Mode and speckle tracking technology were compared from a third blinded observer.
Results: We analysed 104 ultrasound loops from 52 patients. The area under the ROC curve of the maximal pleural strain value to identify lung sliding abolition was 1.00 [95%CI 1.00; 1.00]. Specificity was 100% [95%CI 93%; 100%] and sensitivity was 100% [95%CI 93%; 100%] with the best cut-off of 4%. Over 104 ultrasound loops, the blinded observer made two errors with B-Mode and none with speckle tracking. The median diagnosis time was 3 [2-5] seconds for B-Mode versus 2 [1-2] seconds for speckle tracking (p = 0.001).
Conclusion: Speckle tracking technology allows lung sliding quantification and detection of lung sliding abolition in case of pneumothorax on selected ultrasound loops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00134-019-05710-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!