Metals embedded in porous media interact electrochemically with the liquid phase contained in the pores. A widespread form of this, adversely affecting the integrity of engineered structures, is corrosion of steel in porous media or in natural environments. While it is well documented that the rate of this electrochemical dissolution process can vary over several orders of magnitude, understanding the underlying mechanisms remains a critical challenge hampering the development of reliable predictive models. Here we study the electrochemical dissolution kinetics of steel in meso-to-macro-porous media, using cement-based materials, wood and artificial soil as model systems. Our results reveal the dual role of the pore structure (that is, the influence on the electrochemical behaviour through transport limitations and an area effect, which is ultimately due to microscopic inhomogeneity of the metal/porous material interface). We rationalize the observations with the theory of capillary condensation and propose a material-independent model to predict the corrosion rate.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-019-0439-8DOI Listing

Publication Analysis

Top Keywords

electrochemical dissolution
12
porous media
12
kinetics electrochemical
4
dissolution metals
4
metals porous
4
media
4
media metals
4
metals embedded
4
embedded porous
4
media interact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!