Cardiac fibrosis is an underlying cause of diastolic dysfunction, contributing to heart failure. Substance P (SP) activation of the neurokinin-1 receptor (NK-1R) contributes to cardiac fibrosis in hypertension. However, based on in vitro experiments, this does not appear to be via direct activation of cardiac fibroblasts. While numerous cells could mediate the fibrotic effects of SP, herein, we investigate mast cells (MC) as a mechanism mediating the fibrotic actions of SP, since MCs are known to play a role in cardiac fibrosis and respond to SP. Spontaneously hypertensive rats (SHR) were treated with the NK-1R antagonist L732138 (5 mg/kg/d) from 8 to 12 weeks of age. L732138 prevented increased MC maturation of resident immature MCs. NK-1R blockade also prevented increased cardiac MC maturation in angiotensin II-infused mice. MC-deficient mice were used to test the importance of MC NK-1Rs to MC activation. MC-deficient mice administered angiotensin II did not develop fibrosis; MC-deficient mice reconstituted with MCs did develop fibrosis. MC-deficient mice reconstituted with MCs lacking the NK-1R also developed fibrosis, indicating that NK-1Rs are not required for MC activation in this setting. In conclusion, the NK-1R causes MC maturation, however, other stimuli are required to activate MCs to cause fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662794 | PMC |
http://dx.doi.org/10.1038/s41598-019-47369-0 | DOI Listing |
Front Immunol
January 2025
Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Introduction: A subtype of human mast cells (MCs) found in the skin and to a lesser extent in the lung and gut express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR-X2 (MRGPRX2, mouse counterpart MrgprB2). In addition to drug-induced pseudoallergy and cutaneous disorders, MrgprB2 contributes to ulcerative colitis, IgE-mediated lung inflammation and systemic anaphylaxis. Interestingly, most agonists activate MRGPRX2 with higher potency than MrgprB2.
View Article and Find Full Text PDFTuberculosis (Edinb)
January 2025
Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico. Electronic address:
Tuberculosis (TB) is a global health problem with diverse clinical manifestations. Different cells of the immune response participate in containing the infection, mainly through the development of granulomas. Mast cells (MCs) are hematopoietic cells that participate in the immune response to different pathogens, and in vitro evidence indicates that they can be activated by Mycobacterium tuberculosis (Mtb).
View Article and Find Full Text PDFImmunology
November 2024
Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
Interleukin (IL)-33 released from airway epithelial cells plays a vital role in shaping type 2 immune responses by binding to the ST2 receptor present in many immune cells, including mast cells (MCs). Intranasal administration of IL-33 in mice induces type 2 lung inflammation, an increase in lung MC progenitors, and transepithelial migration of leukocytes to the bronchoalveolar space. The aim of this study was to determine the contribution of MCs in IL-33-induced lung pathology.
View Article and Find Full Text PDFGut
July 2024
Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
Objective: The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites.
Design: Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics.
Front Cell Neurosci
February 2024
Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
Mast cells (MCs) are located in the meninges of the central nervous system (CNS), where they play key roles in the immune response. MC-deficient mice are advantageous in delineating the role of MCs in the immune response . In this study, we illustrate that a mutation in microphthalmia-associated transcription factor () affects meningeal MC number in a dosage-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!