The Transient Receptor Potential vanilloid 4 ion channel (TRPV4) is an important sensor for osmotic and mechanical stimuli in the musculoskeletal system, and it is also involved in processes of nociception. In this study we investigated the putative role of TRPV4 ion channels in joint pain. In anesthetized rats we recorded from mechanosensitive nociceptive A∂- and C-fibres supplying the medial aspect of the knee joint. The intraarticular injection of the TRPV4 antagonist RN-1734 into the knee joint reduced the responses of C-fibres of the normal joint to noxious mechanical stimulation and the responses of the sensitized C-fibres of the acutely inflamed joint to innocuous and noxious mechanical stimulation. The responses of nociceptive A∂-fibres were not significantly altered by RN-1734. The intraarticular application of the TRPV4 agonists 4αPDD, GSK 1016790 A, and RN-1747 did not consistently alter the responses of A∂- and C-fibres to mechanical stimulation of the joint nor did they induce ongoing activity. We conclude that TRPV4 ion channels are involved in the responses of C-fibres to noxious mechanical stimulation of the normal joint, and in the enhanced sensitivity of C-fibres to mechanical stimulation of the joint during inflammation of the joint.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662841PMC
http://dx.doi.org/10.1038/s41598-019-47342-xDOI Listing

Publication Analysis

Top Keywords

mechanical stimulation
20
noxious mechanical
12
joint
10
transient receptor
8
receptor potential
8
potential vanilloid
8
vanilloid ion
8
ion channel
8
inflamed joint
8
trpv4 ion
8

Similar Publications

Melatonin antagonizes bone loss induced by mechanical unloading via IGF2BP1-dependent mA regulation.

Cell Mol Life Sci

January 2025

The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.

Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that mA reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice.

View Article and Find Full Text PDF

Background: Essential tremor (ET) is the most common neurological movement disorder with few treatments and limited therapeutic efficacy, research into noninvasive and effective treatments is critical. Abnormal cerebello-thalamo-cortical (CTC) loop function are thought to be significant pathogenic causes of ET, with the cerebellum and cortex are common targets for ET treatment. In recent years, transcranial magnetic stimulation (TMS) has been recognized as a promising brain research technique owing to its noninvasive nature and safety.

View Article and Find Full Text PDF

Although the accumulation of random genetic mutations has been traditionally viewed as the main cause of cancer progression, altered mechanobiological profiles of the cells and microenvironment also play a major role as a mutation-independent element. To probe the latter, we have previously reported a microfluidic cell-culture platform with an integrated flexible actuator and its application for sequential cyclic compression of cancer cells. The platform is composed of a control microchannel in a top layer for introducing external pressure, and a polydimethylsiloxane (PDMS) membrane from which a monolithically-integrated actuator protrudes downwards into a cell-culture microchannel.

View Article and Find Full Text PDF

BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection.

J Mater Chem B

January 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat.

View Article and Find Full Text PDF

Achilles tendon rupture is a common and serious condition that remains a challenge in the restoration of tendon structure and function. The design and use of high-performance piezoelectric materials serve as an effective solution to enhance repair outcomes, shorten recovery times, and reduce the risk of recurrence. In this study, we prepared a chitosan piezoelectric gel (CSPG) as an organic polymer with excellent biocompatibility, stretchability, and piezoelectric properties as well as excellent antibacterial properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!