Current approaches for electric power generation from nanoscale conducting or semiconducting layers in contact with moving aqueous droplets are promising as they show efficiencies of around 30%, yet even the most successful ones pose challenges regarding fabrication and scaling. Here, we report stable, all-inorganic single-element structures synthesized in a single step that generate electrical current when alternating salinity gradients flow along its surface in a liquid flow cell. Nanolayers of iron, vanadium, or nickel, 10 to 30 nm thin, produce open-circuit potentials of several tens of millivolt and current densities of several microA cm at aqueous flow velocities of just a few cm s The principle of operation is strongly sensitive to charge-carrier motion in the thermal oxide nanooverlayer that forms spontaneously in air and then self-terminates. Indeed, experiments suggest a role for intraoxide electron transfer for Fe, V, and Ni nanolayers, as their thermal oxides contain several metal-oxidation states, whereas controls using Al or Cr nanolayers, which self-terminate with oxides that are redox inactive under the experimental conditions, exhibit dramatically diminished performance. The nanolayers are shown to generate electrical current in various modes of application with moving liquids, including sliding liquid droplets, salinity gradients in a flowing liquid, and in the oscillatory motion of a liquid without a salinity gradient.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697787 | PMC |
http://dx.doi.org/10.1073/pnas.1906601116 | DOI Listing |
Circ Cardiovasc Imaging
January 2025
Division of Cardiology, Department of Medicine, University of California, San Francisco (L.C., S.D., D.B., J.J.T., Q.F., L.T., A.H.R., R.J., S.H., H.H.H., Z.H.T., N.B.S., F.N.D.).
Background: A subset of patients with mitral valve prolapse (MVP), a highly heritable condition, experience sudden cardiac arrest (SCA) or sudden cardiac death (SCD). However, the inheritance of phenotypic imaging features of arrhythmic MVP remains unknown.
Methods: We recruited 23 MVP probands, including 9 with SCA/SCD and 14 with frequent/complex ventricular ectopy.
Natl Sci Rev
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.
View Article and Find Full Text PDFFront Neurosci
December 2024
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Introduction: Traditional extraocular electrical stimulation typically produces diffuse electric fields across the retina, limiting the precision of targeted therapy. Temporally interfering (TI) electrical stimulation, an emerging approach, can generate convergent electric fields, providing advantages for targeted treatment of various eye conditions.
Objective: Understanding how detailed structures of the retina, especially the optic nerve, affects electric fields can enhance the application of TI approach in retinal neurodegenerative and vascular diseases, an essential aspect that has been frequently neglected in previous researches.
Osteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models.
View Article and Find Full Text PDFBackground: Patients with arrhythmogenic cardiomyopathy (ACM) due to pathogenic variants in , the gene for the desmosomal protein plakophilin-2, are being enrolled in gene therapy trials designed to replace the defective allele via adeno-associated viral (AAV) transduction of cardiac myocytes. Evidence from experimental systems and patients indicates that ventricular myocytes in ACM have greatly reduced electrical coupling at gap junctions and reduced Na current density. In previous AAV gene therapy trials, <50% of ventricular myocytes have generally been transduced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!