Aortic valve stenosis is associated with an elevated left ventricular pressure and transaortic pressure drop. Clinicians routinely use Doppler ultrasound to quantify aortic valve stenosis severity by estimating this pressure drop from blood velocity. However, this method approximates the peak pressure drop, and is unable to quantify the partial pressure recovery distal to the valve. As pressure drops are flow dependent, it remains difficult to assess the true significance of a stenosis for low-flow low-gradient patients. Recent advances in segmentation techniques enable patient-specific Computational Fluid Dynamics (CFD) simulations of flow through the aortic valve. In this work a simulation framework is presented and used to analyze data of 18 patients. The ventricle and valve are reconstructed from 4D Computed Tomography imaging data. Ventricular motion is extracted from the medical images and used to model ventricular contraction and corresponding blood flow through the valve. Simplifications of the framework are assessed by introducing two simplified CFD models: a truncated time-dependent and a steady-state model. Model simplifications are justified for cases where the simulated pressure drop is above 10 mmHg. Furthermore, we propose a valve resistance index to quantify stenosis severity from simulation results. This index is compared to established metrics for clinical decision making, i.e. blood velocity and valve area. It is found that velocity measurements alone do not adequately reflect stenosis severity. This work demonstrates that combining 4D imaging data and CFD has the potential to provide a physiologically relevant diagnostic metric to quantify aortic valve stenosis severity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2019.07.010DOI Listing

Publication Analysis

Top Keywords

aortic valve
16
pressure drop
16
stenosis severity
16
valve stenosis
12
valve
9
computational fluid
8
fluid dynamics
8
quantify aortic
8
blood velocity
8
imaging data
8

Similar Publications

Background: Patients with low-flow, low-gradient (LFLG) aortic stenosis (AS) have precarious hemodynamics and are a fragile population for intervention. Quantification of aortic valve calcification (AVC) severity is a critical component of the evaluation for transcatheter aortic valve replacement (TAVR); this study aims to further clarify its utility for risk stratification in LFLG AS.

Methods: This retrospective study evaluated 467 patients with LFLG AS undergoing TAVR at a large quaternary-care hospital from January 2019 to December 2021.

View Article and Find Full Text PDF

Background: Anatomic considerations of transcatheter aortic valve implantation (TAVI) have an important role for the procedure planning, but sex-specific data are lacking.

Methods: All eligible cases undergoing evaluation for TAVI procedure in the period from November 2019 to July 2023 at the University Hospital of Split were included. Cardiac computed tomography was analysed to derive the measures of left ventricular outflow tract (LVOT), aortic root, ascending aorta, and ilio-femoral arteries.

View Article and Find Full Text PDF

The prevalence of aortic stenosis in Māori undergoing clinically indicated echocardiography compared to New Zealand Europeans.

N Z Med J

January 2025

Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Cardiology, Dunedin Hospital, Southern District Health Board, Dunedin, New Zealand.

Aim: There are limited data on the prevalence of calcific aortic valve disease (CAVD) in Māori and known inequities in outcomes after aortic valve intervention. Our study aimed to investigate the prevalence of CAVD in Māori.

Methods: Data from initial clinically indicated echocardiograms performed between 2010 to 2018 in patients aged ≥18 years were linked to nationally collected outcome data.

View Article and Find Full Text PDF

Cardiovascular Disease-Specific Responses to Autonomic Denervation.

JACC Clin Electrophysiol

January 2025

Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China. Electronic address:

Background: Calcium-mediated autonomic denervation has been shown to suppress postoperative atrial fibrillation (POAF) after coronary artery bypass grafting.

Objectives: This study sought to evaluate whether similar autonomic denervation can prevent POAF after mitral or aortic valve surgeries.

Methods: This research consisted of 2 single-center, randomized, double-blind, sham-controlled trials: CAP-AF2 (Calcium Autonomic Denervation Prevents Postoperative Atrial Fibrillation in Patients Undergoing Isolated Mitral Valve Surgery for Mitral Regurgitation) for mitral valve (MV) surgery and CAP-AF3 (Calcium Autonomic Denervation Prevents Postoperative Atrial Fibrillation in Patients Undergoing Isolated Aortic Valve Surgery) for aortic valve surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!