Phosphorus loading plays an important role in the occurrence of cyanobacterial blooms and understanding how this nutrient affects the physiology of cyanobacteria is imperative to manage these phenomena. Microcystis aeruginosa and Raphidiopsis raciborskii are cyanobacterial species that form potentially toxic blooms in freshwater ecosystems worldwide. Blooms comprise numerous strains with high trait variability, which can contribute to the widespread distribution of these species. Here, we explored the intraspecific variability in response to phosphorus depleted conditions (P-) testing five strains of each species. Strains could be differentiated by cell volume or genetic profiles except for those of the same species, sampling location and date, though these presented differences in their response to (P-). Although differently affected by (P-) over 10 days, all strains were able to grow and maintain photosynthetic activity. For most M. aeruginosa and R. raciborskii strains growth rates were not significantly different comparing (P+) and (P-) conditions. After ten days in (P-), only one M. aeruginosa strain and two R. raciborskii strains showed reduction in biovolume yield as compared to (P+) but in most strains chlorophyll-a concentrations were lower in (P-) than in (P+). Reduced photosystem II efficiency was found for only one R. raciborskii strain while all M. aeruginosa strains were affected. Only two M. aeruginosa and one R. raciborskii strain increased alkaline phosphatase activity under (P-) as compared to (P+). Variation in P-uptake was also observed but comparison among strains yielded homogeneous groups comprised of representatives of both species. Comparing the response of each species as a whole, the (P-) condition affected growth rate, biovolume yield and chlorophyll yield. However, these parameters revealed variation among strains of the same species to the extent that differences between M. aeruginosa and R. raciborskii were not significant. Taken together, these results do not support the idea that R. raciborskii, as a species, can withstand phosphorus limitation better than M. aeruginosa and also point that the level of intraspecific variation may preclude generalizations based on studies that use only one or few strains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2019.03.006DOI Listing

Publication Analysis

Top Keywords

aeruginosa raciborskii
12
strains
11
intraspecific variability
8
variability response
8
response phosphorus
8
phosphorus depleted
8
depleted conditions
8
aeruginosa
8
microcystis aeruginosa
8
aeruginosa raphidiopsis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!