Social-medication in bees: the line between individual and social regulation.

Curr Opin Insect Sci

USDA-ARS, Honey Bee Breeding, Genetics, and Physiology Research, 1157 Ben Hur Rd Baton Rouge, LA, 70820, United States.

Published: June 2019

AI Article Synopsis

  • The term "social-medication" refers to how social insects use plants to combat pathogens or parasites, enhancing the colony's overall fitness while considering potential costs.
  • Unlike self-medication, social-medication focuses on the benefits to the colony rather than just individual gains, especially when there are risks involved in consuming certain compounds.
  • The article discusses examples of social bees using plant materials for defense against parasites, and highlights the need for further research to understand the differences between preventive and therapeutic uses of these compounds.

Article Abstract

We use the term social-medication to describe the deliberate consumption or use of plant compounds by social insects that are detrimental to a pathogen or parasite at the colony level, result in increased inclusive fitness to the colony, and have potential costs either at the individual or colony level in the absence of parasite infection. These criteria for social-medication differ from those for self-medication in that inclusive fitness costs and benefits are distinguished from individual costs and benefits. The consumption of pollen and nectar may be considered a form of social immunity if they help fight infection, resulting in a demonstrated increase in colony health and survival. However, the dietary use of pollen and nectar per se is likely not a form of social-medication unless there is a detriment or cost to their consumption in the absence of parasite infection, such as when they contain phytochemicals that are toxic at certain doses. We provide examples among social bees (bumblebees, stingless bees and honey bees) in which the consumption or use of plant compounds have a demonstrated role in parasite defense and health of the colony. We indicate where more work is needed to distinguish between prophylactic and therapeutic effects of these compounds, and whether the effects are observed at the individual or colony level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cois.2019.02.009DOI Listing

Publication Analysis

Top Keywords

colony level
12
consumption plant
8
plant compounds
8
inclusive fitness
8
individual colony
8
absence parasite
8
parasite infection
8
costs benefits
8
pollen nectar
8
colony
6

Similar Publications

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms.

View Article and Find Full Text PDF

Marine heatwaves are starting to occur several times a decade, yet we do not understand the effect this has on corals across biological scales. This study combines tissue-, organism-, and community-level analyses to investigate the effects of a marine heatwave on reef-building corals. Adjacent conspecific pairs of coral colonies of and that showed contrasting phenotypic responses (, bleached .

View Article and Find Full Text PDF

A-to-I-Edited miR-1304-3p Inhibits Glycolysis and Tumor Growth of Esophageal Squamous Cell Carcinoma by Inactivating Wnt5a/ROR2 Signaling.

Mol Carcinog

January 2025

Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.

A-to-I RNA editing is a pervasive mechanism in the human genome that affects the regulation of gene expression and is closely associated with the pathogenesis of numerous diseases. This study elucidates the regulatory mechanism of A-to-I edited miR-1304-3p in esophageal squamous cell carcinoma (ESCC). Western blot, immunohistochemistry, and RT-qPCR assays were employed to quantify protein and mRNA expression.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is known for its high heterogeneity, presenting challenges in current clinical treatment strategies. Accurate subtyping and in-depth analysis of the molecular heterogeneity of GC at the molecular level are still not fully understood.

Methods: This study categorized GC into two subtypes based on apoptosis-related genes (ARGs) and investigated differences in tumor immune microenvironment, intratumoral microorganisms distribution, gene expression, and signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!