The growth inhibitory effect of human gingiva-derived mesenchymal stromal cells expressing interferon-β on tongue squamous cell carcinoma cells and xenograft model.

Stem Cell Res Ther

Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.

Published: July 2019

Background: Interferon-β (IFN-β) is a cytokine with pleiotropic cellular functions, including antiviral, antiproliferative, and immunomodulatory activities. IFN-β inhibits multiple tumor cell growth in vitro. However, the contradiction between the therapeutic dose of IFN-β and its maximally tolerated dose is still inextricable in vivo. Human gingiva-derived mesenchymal stromal cells (GMSCs) represent promising vehicles for cancer gene therapy. This study evaluated the potential of GMSCs genetically engineered to produce IFN-β as a targeted gene delivery system to treat tongue squamous cell carcinoma (TSCC) in vitro and in vivo.

Methods: A lentiviral vector encoding IFN-β was constructed and transfected into GMSCs to obtain IFN-β gene-modified GMSCs (GMSCs/IFN-β). Enzyme-linked immunosorbent assay (ELISA) was used to measure the IFN-β concentration in conditioned medium (CM) from GMSCs/IFN-β. The Cell Counting Kit-8 (CCK8), colony formation assay, and flow cytometry were used to detect the effects of GMSCs/IFN-β on TSCC cell line CAL27 cell growth and apoptosis in vitro. TSCC xenograft model was developed by subcutaneous injection of CAL27 cells into BALB/c nude mouse, and the role of intravenously injected GMSCs/IFN-β in engrafting in TSCC and controlling tumor progression was measured in vivo.

Results: GMSCs/IFN-β expressed a high level of IFN-β. Both CCK8 and colony forming assay showed that GMSCs/IFN-β significantly inhibited the proliferation of CAL27 cells compared with the GMSCs, GMSCs/vector, or DMEM group. Flow cytometry analysis demonstrated that the CAL27 cell apoptosis rate was higher in the GMSCs/IFN-β group than in the other three groups. The in vivo experiment revealed that GMSCs/IFN-β engrafted selectively in TSCC xenograft and expressed a high level of IFN-β. There were smaller tumor volume and lower number of Ki67-positive cells in the GMSCs/IFN-β group than in the GMSCs, GMSCs/vector, or phosphate-buffered saline (PBS) group. Interestingly, GMSCs and GMSCs/vector also presented the potential of CAL27 cell growth inhibition in vitro and in vivo, although such an effect was weaker than GMSCs/IFN-β.

Conclusions: GMSCs/IFN-β inhibits the proliferation of TSCC cells in vitro and in vivo. These results provide evidence that delivery of IFN-β by GMSCs may be a promising approach to develop an effective treatment option for TSCC therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664557PMC
http://dx.doi.org/10.1186/s13287-019-1320-zDOI Listing

Publication Analysis

Top Keywords

cell growth
12
cal27 cell
12
gmscs gmscs/vector
12
ifn-β
10
gmscs/ifn-β
10
human gingiva-derived
8
gingiva-derived mesenchymal
8
mesenchymal stromal
8
stromal cells
8
tongue squamous
8

Similar Publications

Objective: Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC.

View Article and Find Full Text PDF

Background: Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS).

View Article and Find Full Text PDF

Rare malignant ovarian tumors: a review.

Jpn J Clin Oncol

January 2025

Department of Gynecology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.

There are many histologic types of gynecologic malignancies. I reviewed three rare ovarian tumor types that have poor prognoses. Ovarian mesonephric-like adenocarcinoma (MLA) is a newly described histological type known for its aggressive behavior.

View Article and Find Full Text PDF

Flotillins in membrane trafficking and physiopathology.

Biol Cell

January 2025

CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.

Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.

View Article and Find Full Text PDF

Surface immobilization of single atoms on heteroatom-doped carbon nanospheres through phenolic-mediated interfacial anchoring for highly efficient biocatalysis.

Chem Sci

January 2025

BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China

Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!