L. is one of the most consumed and documented legumes in regard to its grain composition, but little is known about L. To evaluate and compare the phenolic compound content and antioxidant activity between landraces of and , a total of 14 accessions of and were collected from farmers in Oaxaca, Mexico. Based on reference standards and spectrophotometry, the polyphenol, flavonoid and anthocyanin contents were quantified, and the antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The results showed significant differences ( ≤ 0.05) between species and accessions, where and significantly differed in their contents of polyphenols, flavonoids, and anthocyanins, as well as their antioxidant activity in the seed coat and cotyledons. Higher concentrations were found in the seed coat than in the cotyledons for both species. had a higher anthocyanin content in the seed coat and a higher flavonoid content in the cotyledons than , but it did not for the other compounds tested. There was high variability among the accessions that were classified into four phenotypic groups: Two of , one of a mixed group, and one group of

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723271PMC
http://dx.doi.org/10.3390/foods8080295DOI Listing

Publication Analysis

Top Keywords

antioxidant activity
12
seed coat
12
coat cotyledons
8
complementarity phenolic
4
phenolic compounds
4
antioxidant
4
compounds antioxidant
4
antioxidant activities
4
activities landraces
4
landraces consumed
4

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.

View Article and Find Full Text PDF

This study aims to reduce engine emissions while maintaining engine performance and providing a sustainable fuel source for long-term use. It introduces a novel approach by combining pine oil (PO) and lemon grass oil (LGO) with diesel fuel in a specific ratio (10% PO + 10% LGO + 80% Diesel). This work is innovative in that it employs these two distinct low-viscosity biofuel blends in conjunction with diesel fuel in an agricultural engine, resulting in reduced carbon footprints in the tailpipe.

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!