In this study, we used MALDI-TOF-MS to profile and characterise the triacylglycerol (TAG) species of anhydrous bovine milk fat (AMF) and its low melting (olein) and high melting (stearin) fractions obtained by dry fractionation. Silver-ion solid phase extraction (Ag-SPE) cartridges were utilised to separate the TAGs according to saturation degree. Then, several TAG species were selected and fragmented via post-source decay (PSD) fragmentation. MALDI-TOF-MS TAG profiles and fragmentation patterns were compared to the TAG and fatty acid (FA) compositions obtained by gas chromatography-flame ionization detector (GC-FID). We found that, olein was rich in medium length chain TAG species like CN38:0 and CN40:1, whereas stearin was rich in saturated long chain TAG species from CN42:0 to CN52:0. Separation of the TAGs based on saturation degree allowed successful selection of the TAG parent-ion for fragmentation by eliminating the interferences of TAG species that have the same carbon number but vary in number of double bonds. The TAG fragmentation patterns indicated significant differences between AMF, olein and stearin as a result of the dry fractionation process. Compared to AMF, olein yielded in higher fragments of short-chain saturated and middle-chain unsaturated FAs. Whereas, stearin yielded in saturated and monounsaturated long chain FA fragments. Fragmentation of unsaturated long chain TAGs showed that the TAGs in olein contained more C18:1 and C18:2 than that of AMF and stearin. Stearin on the other hand, contained higher amount of TAG species containing C16:0. These results were in line with the FA compositions obtained from GC-FID and suggest that Ag-SPE cartridges coupled with MALDI-TOF-MS offer an informative and practical approach to characterise fats and oils with complex TAG composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2019.06.013 | DOI Listing |
Alzheimers Dement
December 2024
Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA.
Background: The emerging tools of protein-protein interactome network offer a platform to explore not only the molecular complexity of human diseases, but also to identify risk genes and drug targets. Integration of the genome, transcriptome, proteome, and the interactome networks are essential for such identification, including Alzheimer's disease (AD), Parkinson disease (PD), and Amyotrophic lateral sclerosis (ALS) METHOD: In this study, we performed multi-modal analyses of cross-species protein interactome networks and human brain functional genomics data to identify risk genes and drug targets for neurodegenerative diseases. We presented a multi-view topology-based deep learning framework to identify disease-associated genes for cross-species interactome (TAG-X).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France.
SAr reactions were remarkably accelerated using a pretargeting and activating unit based on dynamic covalent chemistry (DCvC). A Cys attack at the C-F bond on the aromatic ring of salicylaldehyde derivatives was only observed upon iminium formation with a neighboring Lys residue of model small peptides. Such self-activation was ascribed to the stronger electron-withdrawing capability of the iminium bond with respect to that of the parent aldehyde that stabilized the transition state of the reaction, together with the higher preorganization of the reactive groups in the cationic aldiminium species.
View Article and Find Full Text PDFSci Rep
December 2024
College of Life sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271016, China.
The mitochondrial whole genome of Phellinus igniarius was sequenced with the objective of examining the evolutionary relationships amongst related species. The entire mitochondrial genome was assembled using Illumina sequencing technology. The structural annotation and bioinformatics analysis were performed.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.
Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.
The spurdog (Squalus acanthias Linnaeus, 1758) is a globally distributed squaliform shark that has historically been overfished but is now recovering in the northeast Atlantic. Data series on spurdog movement and habitat use have been somewhat limited to research surveys due to challenges associated with electronic tagging. Here, we offer a revised attachment method for externally attached pop-up satellite archival tags that was successful in long-term deployments on pregnant females.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!