Blinking of fluorescent nanoparticles is a compelling phenomenon with widely debated mechanisms. The ability to inhibit or control blinking is important for applications in the field of optical, semiconductor and fluorescent imaging. Self-blinking nanomaterials are also attractive labels for localization-based super-resolution microscopy. In this work, we have synthesized silver core silica nanoparticles (Ag@SiO) doped with Rhodamine 110 and studied the parameters that affect blinking. We found that under nitrogen rich conditions the nanoparticles shifted towards higher duty cycles. Also, it was found that hydrated nanoparticles showed a less drastic response to nitrogen rich conditions as compared to dried nanoparticles, indicating that surrounding matrix played a role in the response of nanoparticles to molecular oxygen. Further, the blinking is not a multi-body phenomena, super-resolution localization combined with intensity histogram analysis confirmed that single particles are emitting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7278086 | PMC |
http://dx.doi.org/10.1088/1361-6528/ab368d | DOI Listing |
Plasmonic structured illumination microscopy (PSIM) is a super-resolution technique that utilizes surface plasmon polaritons (SPPs) with higher frequency as the structured light; thus, it is able to break the diffraction limit with a 3-4 times resolution enhancement. However, the low efficiency of near-field fluorescence collection results in a low imaging signal-to-noise ratio (SNR) of PSIM. In this paper, we propose a method to enhance the performance of PSIM with surface plasmon coupled emission (SPCE).
View Article and Find Full Text PDFJ Clin Pathol
January 2025
Pathology & Data Analytics, Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds, LS9 7TF, UK.
Aims: Establishment of a protocol for routine single-molecule localisation microscopy (SMLM) imaging on formalin fixed paraffin embedded (FFPE) tissue using medical renal disease including minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS).
Methods: Protocol for normal and diseased renal FFPE tissue was developed to investigate the clinical diagnostic potential of SMLM. Antibody concentrations were determined for confocal microscopy and transferred to SMLM.
JCI Insight
January 2025
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States of America.
Obscurin is a giant protein that coordinates diverse aspects of striated muscle physiology. Obscurin immunoglobulin domains 58/59 (Ig58/59) associate with essential sarcomeric and Ca2+ cycling proteins. To explore the pathophysiological significance of Ig58/59, we generated the Obscn-ΔIg58/59 mouse model, expressing obscurin constitutively lacking Ig58/59.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States.
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!