Precise control of iron activating persulfate by current generation in an electrochemical membrane reactor.

Environ Int

Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Electronic address:

Published: October 2019

Activated persulfate (PS) oxidation is promising for contaminant removal but a lack of controllable activation can lead to a loss of reagents and thus low contamination degradation. Herein, we have proposed and investigated an innovative method to control PS activation by introducing ion exchange membrane into electrochemically activated PS. This electrochemical membrane reactor (EMR) could precisely control PS activation by adjusting electrical current for slow release of Fe, and also avoid direct contact between PS and a sacrificial anode electrode (iron electrode)/an alkaline cathode solution. It was found that the PS decomposition rate constant was linearly increased by increasing the applied current (R = 0.988). The rate of the released Fe also exhibited a linear relationship with the applied current (R = 0.995). Compared to one-time dosage of Fe, the EMR-based slow-release process had higher contamination degradation and better PS utilization (molar ratio of the decomposed PS to the migrated Fe, 1.04 ± 0.01:1), thereby minimizing the waste of both reaction reagents and generated radicals. The EMR was also employed to degrade a representative dye contaminant in a controllable manner and achieved 95.7 ± 0.7% removal percentage with PS dosage of 3.0 g L within 20 min. This study is among the earliest to explore effective approaches for precisely controlling PS activation and subsequent oxidation of contaminants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2019.105024DOI Listing

Publication Analysis

Top Keywords

electrochemical membrane
8
membrane reactor
8
contamination degradation
8
control activation
8
applied current
8
precise control
4
control iron
4
iron activating
4
activating persulfate
4
current
4

Similar Publications

Laser scribed proton exchange membranes for enhanced fuel cell performance and stability.

Nat Commun

December 2024

Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.

View Article and Find Full Text PDF

Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).

View Article and Find Full Text PDF

The formation and growth of lithium dendrites is an ever-present and urgent problem in lithium-ion batteries (LIBs). At the same time, the low melting point of commercial polyolefin separators may lead to safety issues during application. On this basis, in this work, poly (m-phenylene isophthalamide) (PMIA)/Zr-based metal-organic framework (NH-UiO-66) composite separator was prepared by non-solvent induced phase separation (NIPS).

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!