Cooperation between two strains of Enterobacter and Klebsiella in the simultaneous nitrogen removal and phosphate accumulation processes.

Bioresour Technol

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China. Electronic address:

Published: November 2019

Two strains, Enterobacter sp. Z1 and Klebsiella sp. Z2, were exhibited great capacities for heterotrophic nitrification-aerobic denitrification (HNAD) and intracellular phosphate accumulation. Strikingly, the co-cultured strains enhanced the removal efficiency of total nitrogen and phosphate, with removal efficiencies of ammonia, nitrate, nitrite and soluble phosphate of 99.64%, 99.85%, 96.94% and 66.7% respectively. Furthermore, high removal efficiencies from wastewaters with high concentrations of ammonia (over 1000 mg/L) were achieved by inoculation with the co-strains, which left residual ammonia of less than 1 mg/L within 10 h. To elucidate the mechanism of HNAD in co-strains, quantitative PCR was carried out to examine the expression levels of hydroxylamine oxidase (Hao), nitrate reductase (NapA and NarG), nitrite reductase (NirS) and polyphosphate kinase (Ppk), and the results showed that the napA2, narG and ppk genes in the strains were significantly upregulated under the co-cultured conditions and provided an explanation for the nitrogen and phosphate removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.121854DOI Listing

Publication Analysis

Top Keywords

strains enterobacter
8
enterobacter klebsiella
8
phosphate accumulation
8
nitrogen phosphate
8
phosphate removal
8
removal efficiencies
8
removal
5
phosphate
5
cooperation strains
4
klebsiella simultaneous
4

Similar Publications

: A positive intraoperative bile culture (bacterobilia) is considered to be a risk factor for increased morbidity after pancreatoduodenectomy. The aim of our study was to describe the frequency of bacterobilia with a special emphasis on antibiotic resistance and to analyze the association of these findings with postoperative complications, in particular with postoperative pancreatic fistula. : From a prospective database, patients with available intraoperative bile cultures (n = 95) were selected and analyzed.

View Article and Find Full Text PDF

A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time.

View Article and Find Full Text PDF

Ammonia-Assimilating Bacteria Promote Wheat () Growth and Nitrogen Utilization.

Microorganisms

December 2024

Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.

Nitrogen fertilizers in agriculture often suffer losses. Ammonia-assimilating bacteria can immobilize ammonia and reduce these losses, but they have not been used in agriculture. This study identified an ammonia-assimilating strain, sp.

View Article and Find Full Text PDF

Genome Sequencing Reveals the Potential of sp. Strain UNJFSC003 for Hydrocarbon Bioremediation.

Genes (Basel)

January 2025

Departamento de Agronomía, Universidad Nacional José Faustino Sánchez Carrión (UNJFSC), Lima 15136, Peru.

Bioremediation induced by bacteria offers a promising alternative for the contamination of aromatic hydrocarbons due to their metabolic processes suitable for the removal of these pollutants, as many of them are carcinogenic molecules and dangerous to human health. Our research focused on isolating a bacterium from the rhizosphere of the tara tree with the ability to degrade polycyclic aromatic hydrocarbons, using draft genomic sequencing and computational analysis. sp.

View Article and Find Full Text PDF

Pathogenic characterization and drug resistance of neonatal sepsis in China: a systematic review and meta-analysis.

Eur J Clin Microbiol Infect Dis

January 2025

Neonatal Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China.

Objectives: Neonatal sepsis is one of the causes of neonatal mortality and bacterial resistance to antibiotics is one of the challenges facing NICU. The aim of this study was to provide a basis for empirical antibiotic selection by comprehensively searching Chinese and non-Chinese databases for studies related to neonatal sepsis pathogenesis conducted in China and synthesizing all the results of the studies conducted in hospitals in China during the period under study METHODS: In this study, we conducted extensive searches of Pubmed, Web of Science, Cochrane, China Biology Medicine disc (SinoMed), China National Knowledge Infrastructure (CNKI) and Wanfang Data. We screened studies published from 2014 to 2023 that were conducted in hospitals in mainland China and involved bacterial blood cultures and susceptibility tests in neonates with neonatal sepsis and extracted the data, which were summarized using Stata 18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!