Sex differences in the effects of acute stress on cerebral glucose metabolism: A microPET study.

Brain Res

Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90619-900, Brazil. Electronic address:

Published: November 2019

Stress has been considered as a risk factor for the development and aggravation of several diseases. The hypothalamic-pituitary-adrenal axis (HPA) is one of the main actors for the stress response and homeostasis maintenance. Positron emission tomography (PET) has been used to evaluate neuronal activity and to study brain regions that may be related to the HPA axis response. Since neuroimaging is an important tool in detecting neuroendocrine-related changes, we used fluorodeoxyglucose-18 (F-FDG) and positron emission microtomography (microPET) to evaluate sexual differences in the glucose brain metabolism after 10, 30 and 40 min of acute stress in Balb/c mice. We also investigated the effects of restraint stress in blood, liver and adrenal gland F-FDG biodistribution using a gamma counter. A decreased glucose uptake in the whole brain in both females and males was found. Additionally, there were time and sex-dependent alterations in the F-FDG uptake after restraint stress in specific brain regions, indicating that males could be more vulnerable to the short-term effects of acute stress. According to the gamma counter biodistribution, only females showed a significant decreased glucose uptake in the blood, liver and right adrenal after restraint stress. In addition, in comparisons between the sexes, males showed a decreased glucose uptake in the whole brain and in several brain regions compared to females. In conclusion, exposure to acute restraint stress resulted in significant decreased glucose metabolism in the brain, with particular effects in different regions and organs in a sex-specific manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2019.146355DOI Listing

Publication Analysis

Top Keywords

restraint stress
16
decreased glucose
16
acute stress
12
brain regions
12
glucose uptake
12
stress
9
effects acute
8
glucose metabolism
8
positron emission
8
blood liver
8

Similar Publications

Schisandrol B alleviates depression-like behavior in mice by regulating bile acid homeostasis in the brain-liver-gut axis via the pregnane X receptor.

Phytomedicine

December 2024

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China. Electronic address:

Background: Depression is a widely recognized neuropsychiatric disorder. Recent studies have shown a potential correlation between bile acid disorders and depression, highlighting the importance of maintaining bile acid balance for effective antidepressant treatment. Schisandrol B (SolB), a primary bioactive compound from Schisandra chinensis (Turcz.

View Article and Find Full Text PDF

Objective: To obtain standard reference values of intraocular pressure measured with rebound tonometry in conscious healthy Egyptian vultures (Neophron percnopterus).

Methods: 17 Egyptian vultures presented for a routine health check, involving a full physical examination, blood film examination, Hct, manual total leukocyte count, and plasma biochemistry. 15 animals considered healthy and with no signs of stress underwent an ophthalmic examination, including observation of facial symmetry, adnexa, and direct fundoscopy to screen for ocular disease.

View Article and Find Full Text PDF

Aim: Chronic stress elevates blood pressure, whereas regular exercise exerts antistress and antihypertensive effects. However, the mechanisms of stress-induced hypertension and preventive effects through exercise remain unknown. Thus, we investigated the molecular basis involved in autonomic blood pressure regulation within the amygdala.

View Article and Find Full Text PDF

Lipopolysaccharide preconditioning disrupts the behavioral and molecular response to restraint stress in male mice.

Neuroscience

January 2025

Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil. Electronic address:

Major depressive disorder (MDD) is a complex neuropsychiatric disorder potentially influenced by factors such as stress and inflammation. Chronic stress can lead to maladaptive brain changes that may trigger immune hyperactivation, contributing to MDD's pathogenesis. While the involvement of inflammation in MDD is well established, the effects of inflammatory preconditioning in animals subsequently exposed to chronic stress remain unclear.

View Article and Find Full Text PDF

Background: Physical restraints are frequently used in ICU patients, while their effects are unclear.

Objective: To explore differences in patient reported mental health outcomes and quality of life between physical restrained and non-physical restrained ICU patients at 3- and 12-months post ICU admission, compared to pre-ICU health status.

Research Methodology/design: Prospective cohort study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!