Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multienzyme complexes, or metabolons, are assemblies or clusters of sequential enzymes that naturally exist in metabolic pathways. These nanomachineries catalyze the conversion of metabolites more effectively than the freely floating enzymes by minimizing the diffusion of intermediates . Bioengineers have devised synthetic versions of multienzyme complexes in cells to synergize heterologous biosynthesis, to improve intracellular metabolic flux, and to achieve higher titer of valuable chemical products. Here, we utilized orthogonal protein reactions (SpyCatcher/SpyTag and SnoopCatcher/SnoopTag pairs) to covalently assemble three key enzymes in the mevalonate biosynthesis pathway and showed 5-fold increase of lycopene and 2-fold increase of astaxanthin production in . The multienzyme complexes are ellipsoidal nanostructures with hollow interior space and uniform thickness and shapes. Intracellular covalent enzyme assembly has yielded catalytic nanomachineries that drastically enlarged the flux of carotenoid biosynthesis . These studies also deepened our understanding on the complexity of hierarchical enzyme assembly .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b03631 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!