Group 3 innate lymphoid cells (ILC3s) have dual roles in intestinal health, acting in both protective and pathogenic capacities, and importantly, modulations in this population of innate lymphoid cells have been implicated in inflammatory bowel disease. Further, subpopulations of ILC3s have been described as serving specific functions in maintaining homeostasis or responding to infection, and aberrant activation of one or more of these subpopulations could exacerbate inflammatory bowel disease. However, the signals that enforce the protective and pathogenic features of ILC3s are not fully elucidated. In this article, we show that IL-21, a cytokine primarily produced by CD4 T cells, acts on a subpopulation of intestinal ILC3s to promote a protective phenotype. IL-21 signaling does not affect the MHC class II-expressing ILC3 subset but promotes ILC3s that express Tbet and are poised to produce IL-22. Consistent with a protective phenotype, IL-21 deficiency dampens cytokine-induced IL-17A production. We show that exacerbated colitis develops in mice lacking the IL-21 receptor, in agreement with a protective role for IL-21 signaling on ILC3s. To our knowledge, these data reveal a novel role for IL-21 in shaping innate lymphoid cell responses in the intestine and provide one mechanism by which effector CD4 T cells can influence innate immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788290 | PMC |
http://dx.doi.org/10.4049/immunohorizons.1900005 | DOI Listing |
Microb Biotechnol
December 2024
Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, USA.
A major factor limiting the biodegradation of organofluorine compounds has been highlighted as fluoride anion toxicity produced by defluorinating enzymes. Here, two highly active defluorinases with different activities were constitutively expressed in Pseudomonas putida ATCC 12633 to examine adaption to fluoride stress. Each strain was grown on α-fluorophenylacetic acid as the sole carbon source via defluorination to mandelic acid, and each showed immediate fluoride release and delayed growth.
View Article and Find Full Text PDFPLoS Genet
December 2024
Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America.
Neuronal inclusions of hyperphosphorylated TDP-43 are hallmarks of disease for most patients with amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene coding for TDP-43, can cause some cases of familial inherited ALS (fALS), indicating dysfunction of TDP-43 drives disease. Aggregated, phosphorylated TDP-43 may contribute to disease phenotypes; alternatively, TDP-43 aggregation may be a protective cellular response sequestering toxic protein away from the rest of the cell.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts.
View Article and Find Full Text PDFNew Phytol
December 2024
Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear.
View Article and Find Full Text PDFIBRO Neurosci Rep
December 2024
Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
Unlabelled: Valproic acid (VPA) demonstrates teratogenic effects during pregnancy. Prenatal exposure to VPA may result in autism spectrum disorder (ASD) -like phenotypes. Apigenin, a natural flavonoid, has been shown to have neuroprotective impacts due to its antioxidant properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!